欧美一级高清在线观看,亚洲第一福利视频,高清在线一区二区,国产成人精品第一区二区

寫方案網(wǎng) > 教學(xué)教案 > 數(shù)學(xué)教案 >

八年級數(shù)學(xué)拓展教案

時間: 新華 數(shù)學(xué)教案

八年級數(shù)學(xué)拓展教案篇1

一、不等式的解集:

※1、能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。

※2、不等式的解可以有無數(shù)多個,一般是在某個范圍內(nèi)的所有數(shù)。

※3、不等式的解集在數(shù)軸上的表示:

用數(shù)軸表示不等式的解集時,要確定邊界和方向:

①定點:有等號的是實心圓點,無等號的是空心圓圈;

②方向:大向右,小向左

二、一元一次不等式:

※1、只含有一個未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1。像這樣的不等式叫做一元一次不等式。

※2、解一元一次不等式的過程與解一元一次方程類似,特別要注意,當(dāng)不等式兩邊都乘以一個負數(shù)時,不等號要改變方向。

※3解一元一次不等式的步驟:

①去分母;

②去括號;

③移項;

④合并同類項;

⑤系數(shù)化為1(注意不等號方向改變的問題)

※4、不等式應(yīng)用的探索(利用不等式解決實際問題)

列不等式解應(yīng)用題基本步驟與列方程解應(yīng)用題相類似,即:

①審:認真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如大于、小于、不大于、不小于等含義;

②設(shè):設(shè)出適當(dāng)?shù)奈粗獢?shù);

③列:根據(jù)題中的不等關(guān)系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:寫出答案,并檢驗答案是否符合題意。

三、一元一次不等式組

※1、定義:由含有一個相同未知數(shù)的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組。

※2、一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集。

如果這些不等式的解集無公共部分,就說這個不等式組無解。

幾個不等式解集的公共部分,通常是利用數(shù)軸來確定。

※3、解一元一次不等式組的步驟:

(1)分別求出不等式組中各個不等式的解集;

(2)利用數(shù)軸求出這些解集的公共部分;

(3)寫出這個不等式組的解集。

八年級數(shù)學(xué)拓展教案篇2

教學(xué)目標(biāo):

1.知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).

2.掌握整數(shù)指數(shù)冪的運算性質(zhì).

3.會用科學(xué)計數(shù)法表示小于1的數(shù).

教學(xué)重點:

掌握整數(shù)指數(shù)冪的運算性質(zhì)。

難點:

會用科學(xué)計數(shù)法表示小于1的數(shù)。

情感態(tài)度與價值觀:

通過學(xué)習(xí)課堂知識使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務(wù)于實踐。能利用事物之間的類比性解決問題.

教學(xué)過程:

一、課堂引入

1.回憶正整數(shù)指數(shù)冪的運算性質(zhì):

(1)同底數(shù)的冪的乘法:am?an=am+n(m,n是正整數(shù));

(2)冪的乘方:(am)n=amn(m,n是正整數(shù));

(3)積的乘方:(ab)n=anbn(n是正整數(shù));

(4)同底數(shù)的冪的除法:am÷an=am?n(a≠0,m,n是正整數(shù),m>n);

(5)商的乘方:()n=(n是正整數(shù));

2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時,a0=1.

3.你還記得1納米=10?9米,即1納米=米嗎?

4.計算當(dāng)a≠0時,a3÷a5===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an=am?n(a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、總結(jié):一般地,數(shù)學(xué)中規(guī)定:當(dāng)n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立.事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an=am+n(m,n是整數(shù))這條性質(zhì)也是成立的.

三、科學(xué)記數(shù)法:

我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012=1.2×10?5.即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學(xué)生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012=1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學(xué)記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應(yīng)該是?m?1.

八年級數(shù)學(xué)拓展教案篇3

一、教學(xué)目標(biāo):

1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

2、會求一組數(shù)據(jù)的極差.

二、重點、難點和難點的突破方法

1、重點:會求一組數(shù)據(jù)的極差.

2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.

三、課堂引入:

下表顯示的是上海20_年2月下旬和20_年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

從表中你能得到哪些信息?

比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

經(jīng)計算可以看出,對于2月下旬的這段時間而言,20_年和20_年上海地區(qū)的平均氣溫相等,都是12度.

這是不是說,兩個時段的氣溫情況沒有什么差異呢?

根據(jù)兩段時間的氣溫情況可繪成的折線圖.

觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.

用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range)。

四、例習(xí)題分析

本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析

問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。

八年級數(shù)學(xué)拓展教案篇4

學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點):

1、經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習(xí)慣;

2、運用菱形的識別方法進行有關(guān)推理.

補充例題:

例1、如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由.

例2、如圖,平行四邊形ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.

四邊形AFCE是菱形嗎?說明理由.

例3、如圖,ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點

(1)試說明四邊形AECG是平行四邊形;

(2)若AB=4cm,BC=3cm,求線段EF的長;

(3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時,四邊形AECG是菱形.

課后續(xù)助:

一、填空題

1、如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

2、如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

且DE∥BA,DF∥CA

(1)要使四邊形AFDE是菱形,則要增加條件______________________

(2)要使四邊形AFDE是矩形,則要增加條件______________________

二、解答題

1、如圖,在□ABCD中,若2,判斷□ABCD是矩形還是菱形?并說明理由。

2、如圖,平行四邊形ABCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5.

(1)AC,BD互相垂直嗎?為什么?

(2)四邊形ABCD是菱形嗎?

3、如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問:四邊形ABFE是菱形嗎?請說明理由。

4、如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.

⑴求證:ABF≌

⑵若將折疊的圖形恢復(fù)原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

八年級數(shù)學(xué)拓展教案篇5

教學(xué)目標(biāo):

1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。

2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進一步發(fā)展學(xué)生的空間觀念,增強審美意識,培養(yǎng)學(xué)生積極進取的生活態(tài)度。

重點與難點:

重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設(shè)計。

難點:分析典型圖案的設(shè)計意圖。

疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖

教具學(xué)具準(zhǔn)備:

提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

教學(xué)過程設(shè)計:

1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)

明確在欣賞了圖案后,簡單地復(fù)習(xí):平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

2、課本

1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。

評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

(二)課內(nèi)練習(xí)

(1)以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。

(2)利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。

(三)議一議

生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。

(四)課時小結(jié)

本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。

通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達到標(biāo)志的效果。)

八年級數(shù)學(xué)上冊教案(五)延伸拓展

進一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。

八年級數(shù)學(xué)拓展教案篇6

課時目標(biāo)

1.掌握分式、有理式的概念。

2.掌握分式是否有意義、分式的值是否等于零的識別方法。

教學(xué)重點

正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

教學(xué)難點:

正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

教學(xué)時間:一課時。

教學(xué)用具:投影儀等。

教學(xué)過程:

一.復(fù)習(xí)提問

1.什么是整式?什么是單項式?什么是多項式?

2.判斷下列各式中,哪些是整式?哪些不是整式?

①+m2②1+x+y2-③④

⑤⑥⑦

二.新課講解:

設(shè)問:不是整工式子中,和整式有什么區(qū)別?

小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

練習(xí):下列各式中,哪些是分式哪些不是?

(1)、、(2)、(3)、(4)、(5)x2、(6)+4

強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。

2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

練習(xí):課后練習(xí)P6練習(xí)1、2題

設(shè)問:(讓學(xué)生看課本上P5“思考”部分,然后回答問題。)

例題講解:課本P5例題1

分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

(板書解題過程。)

3.小結(jié):分式是否有意義的識別方法:當(dāng)分式的分母為零時,分式無意義;當(dāng)分式的分母不等于零時,分式有意義。

增加例題:當(dāng)x取什么值時,分式有意義?

解:由分母x2-4=0,得x=±2。

∴當(dāng)x≠±2時,分式有意義。

設(shè)問:什么時候分式的值為零呢?

例:

解:當(dāng)①分式的值為零

八年級數(shù)學(xué)拓展教案篇7

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的性質(zhì)。

2.內(nèi)容解析

本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過“探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點為:理解二次根式的性質(zhì).

二、目標(biāo)和目標(biāo)解析

1.教學(xué)目標(biāo)

(1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

(2)會運用二次根式的性質(zhì)進行二次根式的化簡;

(3)了解代數(shù)式的概念.

2.目標(biāo)解析

(1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

(2)學(xué)生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

(3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

三、教學(xué)問題診斷分析

二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的能力.

本節(jié)課的教學(xué)難點為:二次根式性質(zhì)的靈活運用.

四、教學(xué)過程設(shè)計

1.探究性質(zhì)1

問題1你能解釋下列式子的含義嗎?

師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

問題2根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

問題3從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì):(≥0).

【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

例2計算

(1);(2).

師生活動:學(xué)生獨立完成,集體訂正.

【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運用.

2.探究性質(zhì)2

問題4你能解釋下列式子的含義嗎?

師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

問題5根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

師生活動學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

問題6從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì):(≥0)

【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

例3計算

(1);(2).

師生活動:學(xué)生獨立完成,集體訂正.

【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運用.

3.歸納代數(shù)式的概念

問題7回顧我們學(xué)過的式子,如,(≥0),這些式子有哪些共同特征?

師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

4.綜合運用

(1)算一算:

【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

(2)想一想:中,的取值范圍是什么?當(dāng)≥0時,等于多少?當(dāng)時,又等于多少?

【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

(3)談一談你對與的認識.

【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.

5.總結(jié)反思

(1)你知道了二次根式的哪些性質(zhì)?

(2)運用二次根式性質(zhì)進行化簡需要注意什么?

(3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

(4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

6.布置作業(yè):教科書習(xí)題16.1第2,4題.

五、目標(biāo)檢測設(shè)計

1.;;.

【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

2.下列運算正確的是()

A.B.C.D.

【設(shè)計意圖】考查學(xué)生運用二次根式的性質(zhì)進行化簡的能力.

3.若,則的取值范圍是.

【設(shè)計意圖】考查學(xué)生對一個數(shù)非負數(shù)的算術(shù)平方根的理解.

4.計算:.

【設(shè)計意圖】考查二次根式性質(zhì)的靈活運用.

八年級數(shù)學(xué)拓展教案篇8

《因式分解》教案

教學(xué)目標(biāo):

1、理解運用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的綜合運用。

3、進一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問題的能力。

教學(xué)重點:

運用平方差公式分解因式。

教學(xué)難點:

高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運用。

教學(xué)案例:

我們數(shù)學(xué)組的觀課議課主題:

1、關(guān)注學(xué)生的合作交流

2、如何使學(xué)困生能積極參與課堂交流。

在精心備課過程中,我設(shè)計了這樣的自學(xué)提示:

1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?

①-x2+y2②-x2-y2③4-9x2

④(x+y)2-(x-y)2⑤a4-b4

3、試總結(jié)運用平方差公式因式分解的條件是什么?

4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

5、試總結(jié)因式分解的步驟是什么?

師巡回指導(dǎo),生自主探究后交流合作。

生交流熱情很高,但把全部問題分析完已用了30分鐘。

生展示自學(xué)成果。

生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。

生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)

生4:不對,應(yīng)分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數(shù)或整式的平方差的形式。

生5:a4-b4可分解為(a2+b2)(a2-b2)

生6:不對,a2-b2還能繼續(xù)分解為a+b)(a-b)

師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數(shù)或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……

反思:這節(jié)課我備課比較認真,自學(xué)提示的設(shè)計也動了一番腦筋,為讓學(xué)生順利得出運用平方差公式因式分解的&39;條件,我設(shè)計了問題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計了問題4,自認為,本節(jié)課一定會上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨立完成,反思這節(jié)課主要有以下幾個問題:

(1)我在備課時,過高估計了學(xué)生的能力,問題2中的③、④、⑤多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時,多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學(xué)生的注意力,導(dǎo)致難點、重點不突出,若能把問題2改為:

下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。

(2)教師備課時,要考慮學(xué)生的知識層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進,切莫過于心急,過分追求課堂容量、習(xí)題類型全等等,例如在問題2的設(shè)計時可寫一些簡單的,像④、⑤可到練習(xí)時再出現(xiàn),發(fā)現(xiàn)問題后再強調(diào)、歸納,效果也可能會更好。

我及時調(diào)整了自學(xué)提示的內(nèi)容,在另一個班也上了這節(jié)課。果然,學(xué)生的討論有了重點,很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非常活躍,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時有點不能應(yīng)對自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習(xí)……下課后,無意間發(fā)現(xiàn)竟還有好幾個同學(xué)課后題沒做。原因是預(yù)習(xí)時不會,上課又沒時間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學(xué)生的齊答,要發(fā)揮組長的職責(zé),注重過關(guān)落實。給學(xué)生一點機動時間,讓學(xué)習(xí)有困難的學(xué)生有機會釋疑,練習(xí)不在于多,要注意融會貫通,會舉一反三。

確實,“學(xué)海無涯,教海無邊”。我們備課再認真,預(yù)設(shè)再周全,面對不同的學(xué)生,不同的學(xué)情,仍然會產(chǎn)生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學(xué)設(shè)計,更新教育觀念,直到永遠……

25405