欧美一级高清在线观看,亚洲第一福利视频,高清在线一区二区,国产成人精品第一区二区

寫方案網 > 教學教案 > 數學教案 >

數學高考復習教案

時間: 新華 數學教案

《正弦定理》

大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

一教材分析

本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

二教法

根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

三學法:

指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

四教學過程

第一:創設情景,大概用2分鐘

第二:實踐探究,形成概念,大約用25分鐘

第三:應用概念,拓展反思,大約用13分鐘

(一)創設情境,布疑激趣

“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

(二)探尋特例,提出猜想

1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

3.讓學生總結實驗結果,得出猜想:

在三角形中,角與所對的邊滿足關系

這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

(三)邏輯推理,證明猜想

1.強調將猜想轉化為定理,需要嚴格的理論證明。

2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

(四)歸納總結,簡單應用

1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

(五)講解例題,鞏固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

(六)課堂練習,提高鞏固

1.在△ABC中,已知下列條件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2.在△ABC中,已知下列條件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

學生板演,老師巡視,及時發現問題,并解答。

(七)小結反思,提高認識

通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

1.用向量證明了正弦定理,體現了數形結合的數學思想。

2.它表述了三角形的邊與對角的正弦值的關系。

3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

(從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)

(八)任務后延,自主探究

如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。

數學高考復習教案篇2

古典概型

學情分析

(二)教學目標

1.知識與技能:

(1)通過試驗理解基本事件的概念和特點;

(2)通過具體實例分析,抽離出古典概型的兩個基本特征,并推導出古典概型下的概率計算公式;

(3)會求一些簡單的古典概率問題。

2.過程與方法:經歷探究古典概型的過程,體驗由特殊到一般的數學思想方法。

3.情感與價值:用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。

(三)教學重、難點

重點:理解古典概型的概念,利用古典概型求解隨機事件的概率。

難點:如何判斷一個試驗是否為古典概型,弄清在一個古典概型中基本事件的總數和某隨機事件包含的基本事件的個數。

(四)教學用具

多媒體課件,投影儀,硬幣,骰子。

(五)教學過程

[情景設置]

[溫故知新]

(1)回顧前幾節課對概率求取的方法:大量重復試驗。

(2)由隨機試驗方法的不足之處引發矛盾沖突:我們需要尋求另外一種更為簡單易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:試驗1:擲一枚質地均勻的硬幣,觀察可能出現哪幾種結果?

試驗2:擲一枚質地均勻的骰子,觀察可能出現的點數有哪幾種結果?

定義:一次試驗中可能出現的每一個結果稱為一個基本事件。

思考:擲一枚質地均勻的骰子

(1)在一次試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎

(2)隨機事件“出現點數小于3”與“出現點數大于3”包含哪幾個基本事件?

擲一枚質地均勻的硬幣

(1)在一次試驗中,會同時出現“正面向上”和“反面向上”這兩個基本事件嗎

(2)“必然事件”包含哪幾個基本事件?

基本事件的特點:(1)任何兩個基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

二、古典概型

思考:從基本事件角度來看,上述兩個試驗有何共同特征?

古典概型的特征:(1)試驗中所有可能出現的基本事件的個數有限;

(2)每個基本事件出現的可能性相等。

師生互動:由學生和老師各自舉出一些生活實例并分析是否具備古典概型的兩個特征。

向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這一試驗能用古典概型來描述嗎?為什么?

(2)08年北京奧運會上我國選手張娟娟以出色的成績為我國贏得了射箭項目的第一枚奧運金牌。你認為打靶這一試驗能用古典概型來描述嗎?為什么?

三、求解古典概型

思考:古典概型下,每個基本事件出現的概率是多少?隨機事件出現的概率又如何計算?

(1)基本事件的概率

試驗1:擲硬幣

P(“正面向上”)=P(“反面向上”)=

試驗2:擲骰子

P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=

結論:古典概型中,若基本事件總數有n個,則每一個基本事件出現的概率為

(2)隨機事件的概率

擲骰子試驗中,記事件A為“出現點數小于3”,事件B為“出現點數大于3”,如何求解P(A)與P(B)?

結論:古典概型中,若基本事件總數有n個,A事件所包含的基本事件個數為m,則

P(A)=

古典概型的概率計算公式:

[實戰演練]

例1.標準化考試的選擇題有單選和不定項選擇兩種類型。假設考生不會做,隨機從A、B、C、D四個選項中選擇正確的答案,請問哪種類型的選擇題更容易答對?

分析:解決這個問題的關鍵在于本題什么情況下可以看成古典概型。如果考生掌握了所考察的部分或全部知識,這都不滿足古典概型的第2個條件—等可能性,因此,只有在假定考生不會做,隨機地選擇了一個答案的情況下,才為古典概型。

數學高考復習教案篇3

教學目標

1、知識與技能

(1)了解周期現象在現實中廣泛存在;(2)感受周期現象對實際工作的意義;(3)理解周期函數的概念;(4)能熟練地判斷簡單的實際問題的周期;(5)能利用周期函數定義進行簡單運用。

2、過程與方法

通過創設情境:單擺運動、時鐘的圓周運動、潮汐、波浪、四季變化等,讓學生感知周期現象;從數學的角度分析這種現象,就可以得到周期函數的定義;根據周期性的定義,再在實踐中加以應用。

3、情感態度與價值觀

通過本節的學習,使同學們對周期現象有一個初步的認識,感受生活中處處有數學,從而激發學生的學習積極性,培養學生學好數學的信心,學會運用聯系的觀點認識事物。

教學重難點

重點:感受周期現象的存在,會判斷是否為周期現象。

難點:周期函數概念的理解,以及簡單的應用。

教學工具

投影儀

教學過程

【創設情境,揭示課題】

同學們:我們生活在海南島非常幸福,可以經常看到大海,陶冶我們的情操。眾所周知,海水會發生潮汐現象,大約在每一晝夜的時間里,潮水會漲落兩次,這種現象就是我們今天要學到的周期現象。再比如,[取出一個鐘表,實際操作]我們發現鐘表上的時針、分針和秒針每經過一周就會重復,這也是一種周期現象。所以,我們這節課要研究的主要內容就是周期現象與周期函數。(板書課題)

【探究新知】

1.我們已經知道,潮汐、鐘表都是一種周期現象,請同學們觀察錢塘江潮的圖片(投影圖片),注意波浪是怎樣變化的?可見,波浪每隔一段時間會重復出現,這也是一種周期現象。請你舉出生活中存在周期現象的例子。(單擺運動、四季變化等)

(板書:一、我們生活中的周期現象)

2.那么我們怎樣從數學的角度研究周期現象呢?教師引導學生自主學習課本P3——P4的相關內容,并思考回答下列問題:

①如何理解“散點圖”?

②圖1-1中橫坐標和縱坐標分別表示什么?

③如何理解圖1-1中的“H/m”和“t/h”?

④對于周期函數的定義,你的理解是怎樣?

以上問題都由學生來回答,教師加以點撥并總結:周期函數定義的理解要掌握三個條件,即存在不為0的常數T;x必須是定義域內的任意值;f(x+T)=f(x)。

(板書:二、周期函數的概念)

3.[展示投影]練習:

(1)已知函數f(x)滿足對定義域內的任意x,均存在非零常數T,使得f(x+T)=f(x)。

求f(x+2T),f(x+3T)

略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)

f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)

本題小結,由學生完成,總結出“周期函數的周期有無數個”,教師指出一般情況下,為避免引起混淆,特指最小正周期。

(2)已知函數f(x)是R上的周期為5的周期函數,且f(1)=20__,求f(11)

略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=20__

(3)已知奇函數f(x)是R上的函數,且f(1)=2,f(x+3)=f(x),求f(8)

略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2

【鞏固深化,發展思維】

1.請同學們先自主學習課本P4倒數第五行——P5倒數第四行,然后各個學習小組之間展開合作交流。

2.例題講評

例1.地球圍繞著太陽轉,地球到太陽的距離y是時間t的函數嗎?如果是,這個函數

y=f(t)是不是周期函數?

例2.圖1-4(見課本)是鐘擺的示意圖,擺心A到鉛垂線MN的距離y是時間t的函數,y=g(t)。根據鐘擺的知識,容易說明g(t+T)=g(t),其中T為鐘擺擺動一周(往返一次)所需的時間,函數y=g(t)是周期函數。若以鐘擺偏離鉛垂線MN的角θ的度數為變量,根據物理知識,擺心A到鉛垂線MN的距離y也是θ的周期函數。

例3.圖1-5(見課本)是水車的示意圖,水車上A點到水面的距離y是時間t的函數。假設水車5min轉一圈,那么y的值每經過5min就會重復出現,因此,該函數是周期函數。

3.小組課堂作業

(1)課本P6的思考與交流

(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期幾?7k(k∈Z)天前的那一天是星期幾?100天后的那一天是星期幾?

五、歸納整理,整體認識

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

六、布置作業

1.作業:習題1.1第1,2,3題.

2.多觀察一些日常生活中的周期現象的例子,進一步理解它的特點.

課后小結

歸納整理,整體認識

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后習題

作業

1.作業:習題1.1第1,2,3題.

2.多觀察一些日常生活中的周期現象的例子,進一步理解它的特點.

板書

數學高考復習教案篇4

(一)教學內容

本節課選自《普通高中課程標準實驗教科書》人教A版必修3第三章第二節《古典概型》,教學安排是2課時,本節課是第一課時。

(二)教學目標

1.知識與技能:

(1)通過試驗理解基本事件的概念和特點;

(2)通過具體實例分析,抽離出古典概型的兩個基本特征,并推導出古典概型下的概率計算公式;

(3)會求一些簡單的古典概率問題。

2.過程與方法:經歷探究古典概型的過程,體驗由特殊到一般的數學思想方法。

3.情感與價值:用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。

(三)教學重、難點

重點:理解古典概型的概念,利用古典概型求解隨機事件的概率。

難點:如何判斷一個試驗是否為古典概型,弄清在一個古典概型中基本事件的總數和某隨機事件包含的基本事件的個數。

(四)學情分析

[知識儲備]

初中:了解頻率與概率的關系,會計算一些簡單等可能事件發生的概率;

高中:進一步學習概率的意義,概率的基本性質。

[學生特點]

我所帶班級的學生思維活躍,但對基本概念重視不足,對知識深入理解不夠。善于發現具體事件中的共同點及區別,但從感性認識上升到理性認識有待提高。

(五)教學策略

由身邊實例出發,讓學生在不斷的矛盾沖突中,通過“老師引導”,“小組討論”,“自主探究”等多種方式逐漸形成發現問題,解決問題的思想。

(六)教學用具

多媒體課件,投影儀,硬幣,骰子。

(七)教學過程

[情景設置]

有一本好書,兩位同學都想看。甲同學提議擲硬幣:正面向上甲先看,反面向上乙先看。乙同學提議擲骰子:三點以下甲先看,三點以上乙先看。這兩種方法是否公平?

☆處理:通過生活實例,快速地將學生的注意力引入課堂。提出公平與否實質上是概率大小問題,切入本堂課主題。

[溫故知新]

(1)回顧前幾節課對概率求取的方法:大量重復試驗。

(2)由隨機試驗方法的不足之處引發矛盾沖突:我們需要尋求另外一種更為簡單易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:試驗1:擲一枚質地均勻的硬幣,觀察可能出現哪幾種結果?

試驗2:擲一枚質地均勻的骰子,觀察可能出現的點數有哪幾種結果?

定義:一次試驗中可能出現的每一個結果稱為一個基本事件。

☆處理:圍繞對兩個試驗的分析,提出基本事件的概念。類比生物學中對細胞的研究,過渡到研究基本事件對建立概率模型的必要性。

思考:擲一枚質地均勻的骰子

(1)在一次試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎

(2)隨機事件“出現點數小于3”與“出現點數大于3”包含哪幾個基本事件?

擲一枚質地均勻的硬幣

(1)在一次試驗中,會同時出現“正面向上”和“反面向上”這兩個基本事件嗎

(2)“必然事件”包含哪幾個基本事件?

基本事件的特點:(1)任何兩個基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

☆處理:引導學生從個性中尋找共性,提升學生發現、歸納、總結的能力。設計隨機事件“出現點數小于3”與“出現點數大于3”與課堂引入相呼應,也為后面隨機事件概率的求取打下伏筆。

二、古典概型

思考:從基本事件角度來看,上述兩個試驗有何共同特征?

古典概型的特征:(1)試驗中所有可能出現的基本事件的個數有限;

(2)每個基本事件出現的可能性相等。

☆處理:引導學生觀察、分析、總結這兩個試驗的共同點,培養他們從具體到抽象、從特殊到一般的數學思維能力。在提問時明確思考的角度,讓學生的思維直指概念的本質,避免不必要的發散。

師生互動:由學生和老師各自舉出一些生活實例并分析是否具備古典概型的兩個特征。

(1)向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這一試驗能用古典概型來描述嗎?為什么?

(2)08年北京奧運會上我國選手張娟娟以出色的成績為我國贏得了射箭項目的第一枚奧運金牌。你認為打靶這一試驗能用古典概型來描述嗎?為什么?

設計意圖:讓學生通過身邊實例更加形象、準確的把握古典概型的兩個特點,突破如何判斷一個試驗是否是古典概型這一教學難點。

三、求解古典概型

思考:古典概型下,每個基本事件出現的概率是多少?隨機事件出現的概率又如何計算?

(1)基本事件的概率

試驗1:擲硬幣

P(“正面向上”)=P(“反面向上”)=

試驗2:擲骰子

P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=

結論:古典概型中,若基本事件總數有n個,則每一個基本事件出現的概率為

☆處理:提出“如果不做試驗,如何利用古典概型的特征求取概率?”

先由學生分小組討論擲硬幣試驗中基本事件的概率如何求取并規范學生解答,同時點出甲同學提出的“擲硬幣方案”的公平性;再由學生分析擲骰子試驗中基本事件概率的求解過程并得出一般性結論。

(2)隨機事件的概率

擲骰子試驗中,記事件A為“出現點數小于3”,事件B為“出現點數大于3”,如何求解P(A)與P(B)?

數學高考復習教案篇5

一、總體設想:

本節課的設計有兩條暗線:一是圍繞物理中物體做功,引入數量積的概念和幾何意義;二是圍繞數量積的概念通過變形和限定衍生出新知識――垂直的判斷、求夾角和線段長度的公式。教學方案可從三方面加以設計:一是數量積的概念;二是幾何意義和運算律;三是兩個向量的模與夾角的計算。

二、教學目標:

1.了解向量的數量積的抽象根源。

2.了解平面的數量積的概念、向量的夾角

3.數量積與向量投影的關系及數量積的幾何意義

4.理解掌握向量的數量積的性質和運算律,并能進行相關的判斷和計算

三、重、難點:

【重點】1.平面向量數量積的概念和性質

2.平面向量數量積的運算律的探究和應用

【難點】平面向量數量積的應用

課時安排:

2課時

五、教學方案及其設計意圖:

1.平面向量數量積的物理背景

平面向量的數量積,其源自對受力物體在其運動方向上做功等物理問題的抽象。首先說明放置在水平面上的物體受力F的作用在水平方向上的位移是s,此問題中出現了兩個矢量,即數學中所謂的向量,這時物體力F的所做的功為W,這里的(是矢量F和s的夾角,也即是兩個向量夾角的定義基礎,在定義兩個向量的夾角時,要使學生明確“把向量的起點放在同一點上”這一重要條件,并理解向量夾角的范圍。這給我們一個啟示:功是否是兩個向量某種運算的結果呢?以此為基礎引出了兩非零向量a,b的數量積的概念。

平面向量數量積(內積)的定義

已知兩個非零向量a與b,它們的夾角是θ,則數量abcos(叫a與b的數量積,記作a(b,即有a(b=abcos(,(0≤θ≤π).

并規定0與任何向量的數量積為0.

零向量的方向是任意的,它與任意向量的夾角是不確定的,按數量積的定義a(b=abcos(無法得到,因此另外進行了規定。

3.兩個非零向量夾角的概念

已知非零向量a與b,作=a,=b,則∠AOB=θ(0≤θ≤π)叫a與b的夾角.

,是記法,是定義的實質――它是一個實數。按照推理,當時,數量積為正數;當時,數量積為零;當時,數量積為負。

4.“投影”的概念

定義:bcos(叫做向量b在a方向上的投影。

投影也是一個數量,它的符號取決于角(的大小。當(為銳角時投影為正值;當(為鈍角時投影為負值;當(為直角時投影為0;當(=0(時投影為b;當(=180(時投影為(b.因此投影可正、可負,還可為零。

根據數量積的定義,向量b在a方向上的投影也可以寫成

注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,應結合圖形加以區分。

5.向量的數量積的幾何意義:

數量積a(b等于a的長度與b在a方向上投影bcos(的乘積.

向量數量積的幾何意義在證明分配律方向起著關鍵性的作用。其幾何意義實質上是將乘積拆成兩部分:。此概念也以物體做功為基礎給出。是向量b在a的方向上的投影。

6.兩個向量的數量積的性質:

設a、b為兩個非零向量,則

(1)a(b(a(b=0;

(2)當a與b同向時,a(b=ab;當a與b反向時,a(b=(ab.特別的a(a=a2或

(3)a(b≤ab

(4),其中為非零向量a和b的夾角。

例1.(1)已知向量a,b,滿足,a與b的夾角為,則b在a上的投影為______

(2)若,,則a在b方向上投影為_______

例2.已知,,按下列條件求

數學高考復習教案篇6

等差數列

【教學目標】

1.知識與技能

(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

(2)賬務等差數列的通項公式及其推導過程:

(3)會應用等差數列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

3.情感、態度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數列的概念;②等差數列的通項公式

【教學難點】

①理解等差數列“等差”的特點及通項公式的含義;②等差數列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展.

【設計思路】

1.教法

①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

2.學法

引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

【教學過程】

一:創設情境,引入新課

1.從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

2.水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?

3.我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

教師:以上三個問題中的數蘊涵著三列數.

學生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數列有什么共同特點?

思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

思考3你能將上述的文字語言轉換成數學符號語言嗎?

教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.

(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)

三:舉一反三,鞏固定義

1.判定下列數列是否為等差數列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.

(設計意圖:強化學生對等差數列“等差”特征的理解和應用).

2思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

(設計意圖:強化等差數列的證明定義法)

四:利用定義,導出通項

1.已知等差數列:8,5,2,…,求第200項?

2.已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.

(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)

五:應用通項,解決問題

1判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

2在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數列3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)

六:反饋練習:教材13頁練習1

七:歸納總結:

1.一個定義:

等差數列的定義及定義表達式

2.一個公式:

等差數列的通項公式

3.二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

【設計反思】

本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

數學高考復習教案篇7

教學目標:(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;

(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體

問題,感受集合語言的意義和作用;

教學重點:集合的基本概念與表示方法;

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學過程:

一、引入課題

軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。

二、新課教學

(一)集合的有關概念

1.集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這

些東西,并且能判斷一個給定的東西是否屬于這個總體。

2.一般地,研究對象統稱為元素(element),一些元素組成的總體叫集合(set),也簡

稱集。

3.關于集合的元素的特征

(1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。

(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。

(3)集合相等:構成兩個集合的元素完全一樣

4.元素與集合的關系;

(1)如果a是集合A的元素,就說a屬于(belongto)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(notbelongto)A,記作a?A(或aA)

5.常用數集及其記法

非負整數集(或自然數集),記作N

正整數集,記作N__或N+;

整數集,記作Z

有理數集,記作Q

實數集,記作R

(二)集合的表示方法

我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

思考2,引入描述法

說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

(2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。

具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

如:{--3>2},{(x,y)y=x2+1},{直角三角形},?;

強調:描述法表示集合應注意集合的代表元素

{(x,y)y=x2+3x+2}與{yy=x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

三、歸納小結

本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關系

教材分析:類比實數的大小關系引入集合的包含與相等關系

23809