欧美一级高清在线观看,亚洲第一福利视频,高清在线一区二区,国产成人精品第一区二区

寫方案網 > 教學教案 > 數學教案 >

高中數學教案簡短

時間: 新華 數學教案

高中數學教案簡短篇1

教學目標

1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.

(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.

(2)能從數和形兩個角度認識單調性和奇偶性.

(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.

2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.

3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.

教學建議

一、知識結構

(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.

(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.

二、重點難點分析

(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.

(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.

三、教法建議

(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.

(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.

函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始逐漸讓在數軸上動起來觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式,就比較容易體會它代表的是無數多個等式是個恒等式.關于定義域關于原點對稱的問題也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.

高中數學教案簡短篇2

教學目標

知識與技能目標:

本節的中心任務是研究導數的幾何意義及其應用,概念的形成分為三個層次:

(1) 通過復習舊知“求導數的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問題的途徑。

(2) 從圓中割線和切線的變化聯系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

(3) 依據割線與切線的變化聯系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線的斜率。即:

導數的幾何意義教案=曲線在導數的幾何意義教案處切線的斜率k

在此基礎上,通過例題和練習使學生學會利用導數的幾何意義解釋實際生活問題,加深對導數內涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數學思想方法。

過程與方法目標:

(1) 學生通過觀察感知、動手探究,培養學生的動手和感知發現的能力。

(2) 學生通過對圓的切線和割線聯系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質的本質,有助于數學思維能力的提高。

(3) 結合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發現新知、應用新知。

情感、態度、價值觀:

(1) 通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數學中轉化思想的意義和價值;

(2) 在教學中向他們提供充分的從事數學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發學生的學習潛能,促進他們真正理解和掌握基本的數學知識技能、數學思想方法,獲得廣泛的數學活動經驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態度方面得到良好的發展。

教學重點與難點

重點:理解和掌握切線的新定義、導數的幾何意義及應用于解決實際問題,體會數形結合、以直代曲的思想方法。

難點:發現、理解及應用導數的幾何意義。

教學過程

一、復習提問

1.導數的定義是什么?求導數的三個步驟是什么?求函數y=x2在x=2處的導數.

定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點處的瞬時變化率。

求導數的步驟:

第一步:求平均變化率導數的幾何意義教案;

第二步:求瞬時變化率導數的幾何意義教案.

(即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點導數)

2.觀察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案 在圖形中表示什么?

生:平均變化率表示的是割線PQ的斜率.導數的幾何意義教案

師:這就是平均變化率(導數的幾何意義教案)的幾何意義,

3.瞬時變化率(導數的幾何意義教案)在圖中又表示什么呢?

如圖2-1,設曲線C是函數y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.

導數的幾何意義教案

追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數的幾何意義教案,切線PT的傾斜角為導數的幾何意義教案,易知割線PQ的斜率為導數的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數的幾何意義教案,即導數的幾何意義教案。

由導數的定義知導數的幾何意義教案 導數的幾何意義教案。

導數的幾何意義教案

由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數f'(x0).今天我們就來探究導數的幾何意義。

C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數的幾何意義.

二、新課

1、導數的幾何意義:

函數y=f(x)在點x0處的導數f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.

即:導數的幾何意義教案

口答練習:

(1)如果函數y=f(x)在已知點x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點的切線的傾斜角,并說明切線各有什么特征。

(C層學生做)

(2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數在各點的導數.(A、B層學生做)

導數的幾何意義教案

2、如何用導數研究函數的增減?

小結:附近:瞬時,增減:變化率,即研究函數在該點處的瞬時變化率,也就是導數。導數的正負即對應函數的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數的正負,就可以判斷函數的增減性,體會導數是研究函數增減、變化快慢的有效工具。

同時,結合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。

例1 函數導數的幾何意義教案上有一點導數的幾何意義教案,求該點處的導數導數的幾何意義教案,并由此解釋函數的增減情況。

導數的幾何意義教案

函數在定義域上任意點處的瞬時變化率都是3,函數在定義域內單調遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)

3、利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程.

例2 求曲線y=x2在點M(2,4)處的切線方程.

解:導數的幾何意義教案

∴y'|x=2=2×2=4.

∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

由上例可歸納出求切線方程的兩個步驟:

(1)先求出函數y=f(x)在點x0處的導數f'(x0).

(2)根據直線方程的點斜式,得切線方程為 y-y0=f'(x0)(x-x0).

提問:若在點(x0,f(x0))處切線PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數不存在,不能用上面方法求切線方程。根據切線定義可直接得切線方程導數的幾何意義教案)

(先由C類學生來回答,再由A,B補充.)

例3 已知曲線導數的幾何意義教案上一點導數的幾何意義教案,求:(1)過P點的切線的斜率;

(2)過P點的切線的方程。

解:(1)導數的幾何意義教案,

導數的幾何意義教案

y'|x=2=22=4. ∴ 在點P處的切線的斜率等于4.

(2)在點P處的切線方程為導數的幾何意義教案 即 12x-3y-16=0.

練習:求拋物線y=x2+2在點M(2,6)處的切線方程.

(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

B類學生做題,A類學生糾錯。

三、小結

1.導數的幾何意義.(C組學生回答)

2.利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.

(B組學生回答)

四、布置作業

1. 求拋物線導數的幾何意義教案在點(1,1)處的切線方程。

2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.

3. 求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角

4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;

(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)

教學反思:

本節內容是在學習了“變化率問題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數的幾何意義及“以直代曲”的思想。

本節課主要圍繞著“利用函數圖象直觀理解導數的幾何意義”和“利用導數 的幾何意義解釋實際問題”兩個教學重心展開。 先回憶導數的實際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線上某點處切線的斜率”。

完成本節課第一階段的內容學習后,教師點明,利用導數的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數與切線斜率的關系,并感受導數應用的廣泛性。 本節課注重以學生為主體,每一個知識、每一個發現,總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業看來,效果較好。

高中數學教案簡短篇3

一、教材分析

1.教材所處的地位和作用

在學習了隨機事件、頻率、概率的意義和性質及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現信息技術的優越性而新增的內容。

2.教學的重點和難點

重點:正確理解隨機數的概念,并能應用計算器或計算機產生隨機數。

難點:建立概率模型,應用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現實問題。

二、教學目標分析

1、知識與技能:

(1)了解隨機數的概念;

(2)利用計算機產生隨機數,并能直接統計出頻數與頻率。

2、過程與方法:

(1)通過對現實生活中具體的概率問題的探究,感知應用數學解決問題的方法,體會數學知識與現實世界的聯系,培養邏輯推理能力;

(2)通過模擬試驗,感知應用數字解決問題的方法,自覺養成動手、動腦的良好習慣

3、情感態度與價值觀:

通過數學與探究活動,體會理論來源于實踐并應用于實踐的辯證唯物主義觀點.

三、教學方法與手段分析

1、教學方法:本節課我主要采用啟發探究式的教學模式。

2、教學手段:利用多媒體技術優化課堂教學

四、教學過程分析

㈠創設情境、引入新課

情境1:假設你作為一名食品衛生工作人員,要對某超市內的80袋小包裝餅干中抽取10袋進行衛生達標檢驗,你打算如何操作?

預設學生回答:

⑴采用簡單隨機抽樣方法(抽簽法)

⑵采用簡單隨機抽樣方法(隨機數表法)

教師總結得出:隨機數就是在一定范圍內隨機產生的數,并且得到這個范圍內每一數的機會一樣。(引入課題)

「設計意圖」(1)回憶統計知識中利用隨機抽樣方法如抽簽法、隨機數表法等進行抽樣的步驟和特征;(2)從具體試驗中了解隨機數的含義。

情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗呢?

「設計意圖」當需要隨機數的量很大時,用手工試驗產生隨機數速度太慢,從而說明利用現代信息技術的重要性,體現利用計算器或計算機產生隨機數的必要性。

㈡操作實踐、了解新知

教師:向學生介紹計算器的操作,讓他們了解隨機函數的原理。可事先編制幾個小問題,在課堂上帶著學生用計算器(科學計算器或圖形計算器)操作一遍,讓學生熟悉如何用計算器產生隨機數。

「設計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學生自己按照規則操作,熟悉計算器產生隨機數的操作流程,了解隨機數。

問題1:拋一枚質地均勻的硬幣出現正面向上的概率是50,你能設計一種利用計算器模擬擲硬幣的試驗來驗證這個結論嗎?

思考:隨著模擬次數的不同,結果是否有區別,為什么?

「設計意圖」⑴設計概率模型是解決概率問題的難點,也是能解決概率問題的關鍵,是數學建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機數來代替。(題目讓學生通過熟悉50想到用隨機數0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。

問題2:(1)剛才我們利用了計算器來產生隨機數,我們知道計算機有許多軟件有統計功能,你知道哪些軟件具有隨機函數這個功能?

(2)你會利用統計軟件Excel來產生隨機數0,1嗎?你能設計一種利用計算機模擬擲硬幣的試驗嗎?

「設計意圖」⑴了解有許多統計軟件都有隨機函數這個功能,并與前面第一章所學的用程序語言編寫程序相聯系;⑵Excel是學生比較熟悉的統計軟件,也可讓學生回顧初中用Excel畫統計圖的一些功能和知識,其次讓學生掌握多種隨機模擬試驗方法。

問題3:(1)你能在Excel軟件中畫試驗次數從1到100次的頻率分布折線圖嗎?

(2)當試驗次數為1000,1500時,你能說說出現正面向上的頻率有些什么變化?

「設計意圖」⑴應用隨機模擬方法估計古典概型中隨機事件的概率值;

⑵體會頻率的隨機性與相對穩定性,經歷用計算機產生數據,整理數據,分析數據,畫統計圖的全過程,使學生相信統計結果的真實性、隨機性及規律性。

㈢講練結合、鞏固新知

問題4:天氣預報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?

問1:能用古典概型的計算公式求解嗎?

你能說明一下這為什么不是古典概型嗎?

問2:你如何模擬每一天下雨的概率為40?

「設計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關鍵,是隨機模擬方法應用的重點,也是難點之一。

⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復雜的概率應用題。

歸納步驟:第一步,設計概率模型;

第二步,進行模擬試驗;

方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數;

方法二:(隨機模擬方法--計算機模擬)

第三步,統計試驗的結果。

課堂檢測將一枚質地均勻的硬幣連擲三次,出現"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數。

「設計意圖」通過練習,進一步鞏固學生對本節課知識的掌握。

㈣歸納小結

(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?

(2)你能體會到隨機模擬的優勢嗎?請舉例說說。

「設計意圖」⑴通過問題的思考和解決,使學生理解模擬方法的優點,并充分利用信息技術的優勢;⑵是對知識的進一步理解與思考,又是對本節內容的回顧與總結。

㈤布置練習:

課本練習3、4

「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

[內容結束]

高中數學教案簡短篇4

【高考要求】:三角函數的有關概念(B).

【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

理解任意角三角函數(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數線表示任意角的正弦、余弦、正切.

【教學重難點】:終邊相同的角的意義和任意角三角函數(正弦、余弦、正切)的定義.

【知識復習與自學質疑】

一、問題.

1、角的概念是什么?角按旋轉方向分為哪幾類?

2、在平面直角坐標系內角分為哪幾類?與終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數有什么樣的關系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數有哪些基本關系式?

二、練習.

1.給出下列命題:

(1)小于的角是銳角;(2)若是第一象限的角,則必為第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2與角的終邊不可能相同;

(7)若角與角有相同的終邊,則角(的終邊必在軸的非負半軸上。其中正確的命題的序號是

2.設P點是角終邊上一點,且滿足則的值是

3.一個扇形弧AOB的面積是1,它的周長為4,則該扇形的中心角=弦AB長=

4.若則角的終邊在象限。

5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關系是

6.若是第三象限的角,則-,的終邊落在何處?

【交流展示、互動探究與精講點撥】

例1.如圖,分別是角的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在上所有角的集合;

(3)求始邊在OM位置,終邊在ON位置的所有角的集合.

例2.(1)已知角的終邊在直線上,求的值;

(2)已知角的終邊上有一點A,求的值。

例3.若,則在第象限.

例4.若一扇形的周長為20,則當扇形的圓心角等于多少弧度時,這個扇形的面積最大?最大面積是多少?

【矯正反饋】

1、若銳角的終邊上一點的坐標為,則角的弧度數為.

2、若,又是第二,第三象限角,則的取值范圍是.

3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數是弧度或角度,該扇形的面積是.

4、已知點P在第三象限,則角終邊在第象限.

5、設角的終邊過點P,則的值為.

6、已知角的終邊上一點P且,求和的值.

【遷移應用】

1、經過3小時35分鐘,分針轉過的角的弧度是.時針轉過的角的弧度數是.

2、若點P在第一象限,則在內的取值范圍是.

3、若點P從(1,0)出發,沿單位圓逆時針方向運動弧長到達Q點,則Q點坐標為.

4、如果為小于360的正角,且角的7倍數的角的終邊與這個角的終邊重合,求角的值.

高中數學教案簡短篇5

教學目標:①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴loga5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

例 2 ⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數的值域和單調區間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y= log0.5u, u= x- x2復合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0

⑶已知函數y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調性。

⑷已知函數y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。

5.課堂教學設計說明

這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

高中數學教案簡短篇6

本文題目:高三數學復習教案:古典概型復習教案

【高考要求】古典概型(B);互斥事件及其發生的概率(A)

【學習目標】:1、了解概率的頻率定義,知道隨機事件的發生是隨機性與規律性的統一;

2、理解古典概型的特點,會解較簡單的古典概型問題;

3、了解互斥事件與對立事件的概率公式,并能運用于簡單的概率計算.

【知識復習與自學質疑】

1、古典概型是一種理想化的概率模型,假設試驗的結果數具有性和性.解古典概型問題關鍵是判斷和計數,要掌握簡單的記數方法(主要是列舉法).借助于互斥、對立關系將事件分解或轉化是很重要的方法.

2、(A)在10件同類產品中,其中8件為正品,2件為次品。從中任意抽出3件,則下列4個事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是.

3、(A)從5個紅球,1個黃球中隨機取出2個,所取出的兩個球顏色不同的概率是。

4、(A)同時拋兩個各面上分別標有1、2、3、4、5、6均勻的正方體玩具一次,向上的兩個數字之和為3的概率是.

5、(A)某人射擊5槍,命中3槍,三槍中恰好有2槍連中的概率是.

6、(B)若實數,則曲線表示焦點在y軸上的雙曲線的概率是.

【例題精講】

1、(A)甲、乙兩人參加知識競答,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人依次各抽一題.(1)甲抽到選擇題、乙抽到判斷題的概率是多少?

(2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?

2、(B)黃種人群中各種血型的人所占的比例如下表所示:

血型ABABO

該血型的人所占的比(%)2829835

已知同種血型的人可以輸血,O型血可以輸給任一種血型的人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若小明因病需要輸血,問:

(1)任找一個人,其血可以輸給小明的概率是多少?

(2)任找一個人,其血不能輸給小明的概率是多少?

3、(B)將兩粒骰子投擲兩次,求:(1)向上的點數之和是8的概率;(2)向上的點數之和不小于8的概率;(3)向上的點數之和不超過10的概率.

4、(B)將一個各面上均涂有顏色的正方體鋸成(n個同樣大小的正方體,從這些小正方體中任取一個,求下列事件的概率:(1)三面涂有顏色;(2)恰有兩面涂有顏色;

(3)恰有一面涂有顏色;(4)至少有一面涂有顏色.

【矯正反饋】

1、(A)一個三位數的密碼鎖,每位上的數字都可在0到10這十個數字中任選,某人忘記了密碼最后一個號碼,開鎖時在對好前兩位號碼后,隨意撥動最后一個數字恰好能開鎖的概率是.

2、(A)第1、2、5、7路公共汽車都要停靠的一個車站,有一位乘客等候著1路或5路汽車,假定各路汽車首先到站的可能性相等,那么首先到站的正好是這位乘客所要乘的的車的概率是.

3、(A)某射擊運動員在打靶中,連續射擊3次,事件至少有兩次中靶的對立事件是.

4、(B)某產品分甲、乙、丙三級,其中乙、丙兩級均屬次品,在正常生產情況下出現乙級品和丙級品的概率分別為3%和1%,求抽驗一只是正品(甲級)的概率.

5、(B)袋中裝有4只白球和2只黑球,從中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【遷移應用】

1、(A)將一粒骰子連續拋擲三次,它落地時向上的點數依次成等差數列的概率是.

2、(A)從魚塘中打一網魚,共M條,做上標記后放回池塘中,過了幾天,又打上來一網魚,共N條,其中K條有標記,估計池塘中魚的條數為.

3、(A)從分別寫有A,B,C,D,E的5張卡片中,任取2張,這兩張上的字母恰好按字母順序相鄰的概率是.

4、(B)電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數字組成,則一天中任一時刻的四個數字之和為23的概率是.

5、(B)將甲、乙兩粒骰子先后各拋一次,a,b分別表示拋擲甲、乙兩粒骰子所出現的點數.

(1)若點P(a,b)落在不等式組表示的平面區域記為A,求事件A的概率;

(2)求P(a,b)落在直線x+y=m(m為常數)上,且使此事件的概率最大,求m的值.

高中數學教案簡短篇7

教學目標:

掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導學生發現數學規律,讓學生體會化歸這一基本數學思想在發現中所起的作用,培養學生的創新意識.

教學重點:

二倍角公式的推導及簡單應用.

教學難點:

理解倍角公式,用單角的三角函數表示二倍角的三角函數.

教學過程:

Ⅰ.課題導入

前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學們試推.

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當α=β時,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當α=β時cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當α=β時,tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學們推證所得結果是否與此結果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學們是否也考慮到了呢?

另外運用這些公式要注意如下幾點:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當α=π2 +kπ,k∈Z時,tanα的值不存在;當α=π4 +kπ2 ,k∈Z時tan2α的值不存在).

當α=π2 +kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導公式:

即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當且僅當α=kπ(k∈Z)時,sin2α=2sinα=0成立].

同樣在一般情況下cos2α≠2cosαtan2α≠2tanα

(3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.

高中數學教案簡短篇8

考試要求重難點擊命題展望

1.理解復數的基本概念、復數相等的充要條件.

2.了解復數的代數表示法及其幾何意義.

3.會進行復數代數形式的四則運算.了解復數的代數形式的加、減運算及其運算的幾何意義.

4.了解從自然數系到復數系的關系及擴充的基本思想,體會理性思維在數系擴充中的作用.本章重點:1.復數的有關概念;2.復數代數形式的四則運算.

本章難點:運用復數的有關概念解題.近幾年高考對復數的考查無論是試題的難度,還是試題在試卷中所占比例都是呈下降趨勢,常以選擇題、填空題形式出現,多為容易題.在復習過程中,應將復數的概念及運算放在首位.

知識網絡

15.1復數的概念及其運算

典例精析

題型一復數的概念

【例1】(1)如果復數(m2+i)(1+mi)是實數,則實數m=;

(2)在復平面內,復數1+ii對應的點位于第象限;

(3)復數z=3i+1的共軛復數為z=.

【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是實數1+m3=0m=-1.

(2)因為1+ii=i(1+i)i2=1-i,所以在復平面內對應的點為(1,-1),位于第四象限.

(3)因為z=1+3i,所以z=1-3i.

【點撥】運算此類題目需注意復數的代數形式z=a+bi(a,bR),并注意復數分為實數、虛數、純虛數,復數的幾何意義,共軛復數等概念.

【變式訓練1】(1)如果z=1-ai1+ai為純虛數,則實數a等于

A.0B.-1C.1D.-1或1

(2)在復平面內,復數z=1-ii(i是虛數單位)對應的點位于()

A.第一象限B.第二象限C.第三象限D.第四象限

【解析】(1)設z=xi,x0,則

xi=1-ai1+ai1+ax-(a+x)i=0或故選D.

(2)z=1-ii=(1-i)(-i)=-1-i,該復數對應的點位于第三象限.故選C.

題型二復數的相等

【例2】(1)已知復數z0=3+2i,復數z滿足zz0=3z+z0,則復數z=;

(2)已知m1+i=1-ni,其中m,n是實數,i是虛數單位,則m+ni=;

(3)已知關于x的方程x2+(k+2i)x+2+ki=0有實根,則這個實根為,實數k的值為.

【解析】(1)設z=x+yi(x,yR),又z0=3+2i,

代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,

整理得(2y+3)+(2-2x)i=0,

則由復數相等的條件得

解得所以z=1-.

(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.

則由復數相等的條件得

所以m+ni=2+i.

(3)設x=x0是方程的實根,代入方程并整理得

由復數相等的充要條件得

解得或

所以方程的實根為x=2或x=-2,

相應的k值為k=-22或k=22.

【點撥】復數相等須先化為z=a+bi(a,bR)的形式,再由相等得實部與實部相等、虛部與虛部相等.

【變式訓練2】(1)設i是虛數單位,若1+2i1+i=a+bi(a,bR),則a+b的值是()

A.-12B.-2C.2D.12

(2)若(a-2i)i=b+i,其中a,bR,i為虛數單位,則a+b=.

【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.

(2)3.2+ai=b+ia=1,b=2.

題型三復數的運算

【例3】(1)若復數z=-12+32i,則1+z+z2+z3++z2008=;

(2)設復數z滿足z+z=2+i,那么z=.

【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.

所以zn具有周期性,在一個周期內的和為0,且周期為3.

所以1+z+z2+z3++z2008

=1+z+(z2+z3+z4)++(z2006+z2007+z2008)

=1+z=12+32i.

(2)設z=x+yi(x,yR),則x+yi+x2+y2=2+i,

所以解得所以z=+i.

【點撥】解(1)時要注意x3=1(x-1)(x2+x+1)=0的三個根為1,,-,

其中=-12+32i,-=-12-32i,則

1++2=0,1+-+-2=0,3=1,-3=1,-=1,2=-,-2=.

解(2)時要注意zR,所以須令z=x+yi.

【變式訓練3】(1)復數11+i+i2等于()

A.1+i2B.1-i2C.-12D.12

(2)(20__江西鷹潭)已知復數z=23-i1+23i+(21-i)2010,則復數z等于()

A.0B.2C.-2iD.2i

【解析】(1)D.計算容易有11+i+i2=12.

(2)A.

總結提高

復數的代數運算是重點,是每年必考內容之一,復數代數形式的運算:①加減法按合并同類項法則進行;②乘法展開、除法須分母實數化.因此,一些復數問題只需設z=a+bi(a,bR)代入原式后,就可以將復數問題化歸為實數問題來解決.

25220