欧美一级高清在线观看,亚洲第一福利视频,高清在线一区二区,国产成人精品第一区二区

寫方案網 > 教學教案 > 數學教案 >

高中數學教案課件

時間: 新華 數學教案

高中數學教案課件篇1

一、學情分析

本節課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節課的鞏固性復習。而本節課學生會遇到的困難有:數軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。

二、考綱要求

1.會用坐標表示平面向量的加法、減法與數乘運算.

2.理解用坐標表示的平面向量共線的條件.

3.掌握數量積的坐標表達式,會進行平面向量數量積的運算.

4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.

三、教學過程

(一) 知識梳理:

1.向量坐標的求法

(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.

(2)設A(x1,y1),B(x2,y2),則

=_________________

| |=_______________

(二)平面向量坐標運算

1.向量加法、減法、數乘向量

設 =(x1,y1), =(x2,y2),則

+ = - = λ = .

2.向量平行的坐標表示

設 =(x1,y1), =(x2,y2),則 ∥ ?________________.

(三)核心考點·習題演練

考點1.平面向量的坐標運算

例1.已知A(-2,4),B(3,-1),C(-3,-4).設 (1)求3 + -3 ;

(2)求滿足 =m +n 的實數m,n;

練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),則m-n的值為     .

考點2平面向量共線的坐標表示

例2:平面內給定三個向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求實數k的值;

練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實數,( +λ )∥ ,則λ= (  )

思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

方法總結:

1.向量共線的兩種表示形式

設a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應視題目的具體條件而定,一般情況涉及坐標的應用②.

2.兩向量共線的充要條件的作用

判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數的值.

考點3平面向量數量積的坐標運算

例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,

則 的值為     ; 的值為     .

【提示】解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.

練:(2014,安徽,13)設 =(1,2), =(1,1), = +k .若 ⊥ ,則實數k的值等于(  )

【思考】兩非零向量 ⊥ 的充要條件: · =0?     .

解題心得:

(1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.

(2)解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.

(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.

考點4:平面向量模的坐標表示

例4:(2015湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則 的值為(  )

A.6 B.7 C.8 D.9

練:(2016,上海,12)

在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則 的取值范圍是?

解題心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉化為數量積運算;

(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..

五、課后作業(課后習題1、2題)

高中數學教案課件篇2

一、教學目標

(一)知識與技能

1、進一步熟練掌握求動點軌跡方程的基本方法。

2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。

(二)過程與方法

1、培養學生觀察能力、抽象概括能力及創新能力。

2、體會感性到理性、形象到抽象的思維過程。

3、強化類比、聯想的方法,領會方程、數形結合等思想。

(三)情感態度價值觀

1、感受動點軌跡的動態美、和諧美、對稱美

2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣

二、教學重點與難點

教學重點:運用類比、聯想的方法探究不同條件下的軌跡

教學難點:圖形、文字、符號三種語言之間的過渡

三、、教學方法和手段

【教學方法】觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。

【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。

【教學模式】重點中學實施素質教育的課堂模式"創設情境、激發情感、主動發現、主動發展"。

四、教學過程

1、創設情景,引入課題

生活中我們四處可見軌跡曲線的影子

【演示】這是美麗的城市夜景圖

【演示】許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多

【演示】建筑中也有許多美麗的軌跡曲線

設計意圖:讓學生感受數學就在我們身邊,感受軌跡曲線的動態美、和諧美、對稱美,激發學習興趣。

2、激發情感,引導探索

靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1;

例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

法一:設,則

由得,

化簡得

法二:設,由得

化簡得

法三:設, 由點到定點的距離等于定長,

根據圓的定義得;

第三步:復習求軌跡方程的一般步驟

(1)建立適當的坐標系

(2)設動點的坐標M(x,y)

(3)列出動點相關的約束條件p(M)

(4)將其坐標化并化簡,f(x,y)=0

(5)證明

其中,最關鍵的一步是根據題意尋求等量關系,并把等量關系坐標化

設計意圖:在這里我借助幾何畫板的動畫功能,先讓學生直觀地、形象地、動態地感受動點的軌跡是圓,接著要求學生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。

3、主動發現、主動發展

由上述例1可知,如果人站在梯子中間,則他會劃了一段優美的圓弧飛出去。學生很自然就會想,如果人不是站在中間,而是隨意站,結果會怎樣呢?讓學生動手探究M不是中點時的軌跡。

第一步:利用網絡平臺展示學生得到的軌跡(教師有意識的整合在一起)

設計意圖:借助數學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發現疑問,更容易激發學生學習的熱情,促使他們主動學習。

第二步:分解動作,向學生提出3個問題:

問題1:當M位置不同時,線段BM與MA的大小關系如何?

問題2、體現BM與MA大小關系還有什么常見的形式?

問題3、你能類比例1把這種數量關系表達出來嗎?

第三步:展示學生歸納、概括出來的數學問題

1、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

2、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

3、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)

第四步:課堂完成學生歸納出來的問題1,問題2和3課后完成

4、合作探究、實現創新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業、實現拓展

1、把上述同學們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。

2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學們利用畫板驗證點P 的軌跡。

以下是學生課后探究得到的一些軌跡圖形

課后有學生問,如果X軸和Y軸不垂直會有什么結果?定長的線段在上面滑動怎么做出來?

可以說,學生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。

以下是X軸和Y軸不垂直時的軌跡圖形

五、教學設計說明:

(一)、教材

《平面動點的軌跡》是高二一節探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎知識,其中滲透著運動與變化、方程的思想、數形結合的思想等,是中學數學的重要內容,也是歷年高考數學考查的重點之一。

(二)、校情、學情

校情:我校是一所省一級達標校,省級示范性高中,學校的硬件設施比較完善,每間教室都具備多媒體教學的功能,另外有兩間網絡教室和一個學生電子閱室,并且能隨時上網。

學情:大部分學生家里都有電腦,而且能隨時上網。對學生進行了幾何畫板基本操作的培訓,學生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲線。學生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號三種語言之間的轉換還存在很大的差異,在合作交流意識方面,發展不均衡,有待加強。

(三)學法

觀察、實驗、交流、合作、類比、聯想、歸納、總結

(四)、教學過程

1、創設情景,引入課題

2、激發情感,引導探索

由梯子滑落問題抽象、概括出數學問題

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

第三步:復習求軌跡方程的一般步驟

3、主動發現、主動發展

探究M不是中點時的軌跡

第一步:利用網絡平臺展示學生得到的軌跡

第二步:分解動作,向學生提出3個問題:

第三步:展示學生歸納、概括出來的數學問題

4、合作探究、實現創新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業、實現拓展

(五)、教學特色:

借助網絡、多媒體教學平臺,讓學生自己動手實驗,發現問題并解決問題,同時把學生的學習情況及時的展現出來,做到大家一起學習,一起評價的效果。同時節省了時間,提高了課堂效率。

整個教學過程,體現了四個統一:既學習書本知識與投身實踐的統一、書本學習與現代信息技術學習的統一、書本知識與資源拓展的統一、課堂學習與課外實踐的統一。

本節課學生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產生一些爭執,給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。

高中數學教案課件篇3

直線的方程

教學目標

(1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程.

(2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程.

(3)掌握直線方程各種形式之間的互化.

(4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

(5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

教學建議

1.教材分析

(1)知識結構

由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

(2)重點、難點分析

①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.

解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

2.教法建議

(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

(2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

(3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

(6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

(7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

(8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

高中數學教案課件篇4

1.教學目標

(1)知識目標:1.在平面直角坐標系中,探索并掌握圓的標準方程;

2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.

(2)能力目標:1.進一步培養學生用解析法研究幾何問題的能力;

2.使學生加深對數形結合思想和待定系數法的理解;

3.增強學生用數學的意識.

(3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣.

2.教學重點.難點

(1)教學重點:圓的標準方程的求法及其應用.

(2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

當的坐標系解決與圓有關的實際問題.

3.教學過程

(一)創設情境(啟迪思維)

問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

[引導]畫圖建系

[學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2y2=16(y≥0)

將x=2.7代入,得.

即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。

(二)深入探究(獲得新知)

問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

答:x2y2=r2

2.如果圓心在,半徑為時又如何呢?

[學生活動]探究圓的方程。

[教師預設]方法一:坐標法

如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={mmc=r}

由兩點間的距離公式,點m適合的條件可表示為①

把①式兩邊平方,得(x―a)2(y―b)2=r2

方法二:圖形變換法

方法三:向量平移法

(三)應用舉例(鞏固提高)

i.直接應用(內化新知)

問題三:1.寫出下列各圓的方程(課本p77練習1)

(1)圓心在原點,半徑為3;

(2)圓心在,半徑為;

(3)經過點,圓心在點.

2.根據圓的方程寫出圓心和半徑

(1);(2).

ii.靈活應用(提升能力)

問題四:1.求以為圓心,并且和直線相切的圓的方程.

[教師引導]由問題三知:圓心與半徑可以確定圓.

2.已知圓的方程為,求過圓上一點的切線方程.

[學生活動]探究方法

[教師預設]

方法一:待定系數法(利用幾何關系求斜率-垂直)

方法二:待定系數法(利用代數關系求斜率-聯立方程)

方法三:軌跡法(利用勾股定理列關系式)[多媒體課件演示]

方法四:軌跡法(利用向量垂直列關系式)

3.你能歸納出具有一般性的結論嗎?

已知圓的方程是,經過圓上一點的切線的方程是:.

iii.實際應用(回歸自然)

問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

[多媒體課件演示創設實際問題情境]

(四)反饋訓練(形成方法)

問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

3.求圓x2y2=13過點(-2,3)的切線方程.

4.已知圓的方程為,求過點的切線方程.

高中數學教案課件篇5

教學目標:

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

(2)理解直線與二元一次方程的關系及其證明

(3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

教學重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應關系及其證明.

教學用具:計算機

教學方法:啟發引導法,討論法

教學過程:

下面給出教學實施過程設計的簡要思路:

教學設計思路:

(一)引入的設計

前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節主體內容教學的設計

這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

學生或獨立研究,或合作研究,教師巡視指導.

經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評價,確定最優方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.

當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.

當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?

學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

綜合兩種情況,我們得出如下結論:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程.

至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”.

同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

學生們不難得出:二者可以概括為統一的形式.

這樣上邊的結論可以表述如下:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.

啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?

不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

師生共同討論,評價不同思路,達成共識:

回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即

(1)當時,方程可化為

這是表示斜率為、在軸上的截距為的直線.

(2)當時,由于、不同時為0,必有,方程可化為

這表示一條與軸垂直的直線.

因此,得到結論:

在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.

為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.

【動畫演示】

演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.

至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

(三)練習鞏固、總結提高、板書和作業等環節的設計

高中數學教案課件篇6

【教學目標】

1. 知識與技能

(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

(2)賬務等差數列的通項公式及其推導過程:

(3)會應用等差數列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

3.情感、態度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數列的概念;②等差數列的通項公式

【教學難點】

①理解等差數列“等差”的特點及通項公式的含義;②等差數列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展.

【設計思路】

1.教法

①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

2.學法

引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

【教學過程】

一:創設情境,引入新課

1.從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

2.水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?

3.我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

教師:以上三個問題中的數蘊涵著三列數.

學生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數列有什么共同特點?

思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

思考3你能將上述的文字語言轉換成數學符號語言嗎?

教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.

(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)

三:舉一反三,鞏固定義

1.判定下列數列是否為等差數列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0 .

(設計意圖:強化學生對等差數列“等差”特征的理解和應用).

2思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

(設計意圖:強化等差數列的證明定義法)

四:利用定義,導出通項

1.已知等差數列:8,5,2,…,求第200項?

2.已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.

(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)

五:應用通項,解決問題

1判斷100是不是等差數列2, 9,16,…的項?如果是,是第幾項?

2在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數列 3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)

六:反饋練習:教材13頁練習1

七:歸納總結:

1.一個定義:

等差數列的定義及定義表達式

2.一個公式:

等差數列的通項公式

3.二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

【設計反思】

本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

25221