高中數學教案電子版
高中數學教案電子版篇1
一、教學內容分析
本節內容是學生在學習了乘法原理、排列、排列數公式和加法原理以后的知識,學生已經掌握了排列問題,并且對順序與排列的關系已經有了一個比較清晰的認識.因此關鍵是排列與組合的區別在于問題是否與順序有關.與順序有關的是排列問題,與順序無關是組合問題,順序對排列、組合問題的求解特別重要.排列與組合的區別,從定義上來說是簡單的,但在具體求解過程中學生往往感到困惑,分不清到底與順序有無關系,指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.
二、教學目標設計
1.理解組合的意義,掌握組合數的計算公式;
2.能正確認識組合與排列的聯系與區別
3.通過練習與訓練體驗并初步掌握組合數的計算公式
三、教學重點及難點
組合概念的理解和組合數公式;組合與排列的區別.
四、教學用具準備
多媒體設備
五、教學流程設計
六、教學過程設計
一、 復習引入
1.復習
我們在前幾節中學習了排列、排列數以及排列數公式
定 義
特 點
相同排列
公 式
排 列
以上由學生口答.
2.引入
那么請問:平面上有7個點,問以這7點中任何兩個為端點,構成有向線段有幾條?
這是一個排列問題
若改為:構成的線段有幾條?則為 ,
其實亦可用另一種方法解決,這就是組合.
二、學習新課
探究性質
1. 組合定義: P16
一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合.
【說明】:⑴不同元素; ⑵“只取不排”——無序性;
⑶相同組合:元素相同.
2.組合數定義:
從個不同元素中取出個元素的所有組合的個數,叫做從個不同元素中取出個元素的組合數.用符號表示.
如:引入中的例子可表示為
== 這是為什么呢?
因為 構成有向線段的問題可分成2步來完成:
第一步,先從7個點中選2個點出來,共有種選法;
第二步,將選出的2個點做一個排列,有種次序;
根據乘法原理,共有·= 所以
·判斷何為排列、組合問題: 利用書本P16~P17例題請學生判斷
·這個公式叫組合數公式
3.組合數公式:
如= =
用計算器求 、 、 、
可發現= =
由此猜想:
用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有,就相當于挑46個人不參加長跑的選擇方案一樣.“取法”與“剩法”是“一 一對應”的.
證明:∵
又 ,∴
當m=n時,
此性質作用:當時,計算可變為計算,能夠使運算簡化.
4. 組合數性質:
1、
2、=
可解釋為:從這n 1個不同元素中取出m個元素的組合數是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個元素中取出m (1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個.根據加法原理,可以得到組合數的另一個性質.在這里,主要體現從特殊到一般的歸納思想,“含與不含其元素”的分類思想.
證明:
得證.
【說明】1( 公式特征:下標相同而上標差1的兩個組合數之和,等于下標比原下標多1而上標與高的相同的一個組合數.
2( 此性質的作用:恒等變形,簡化運算.在今后學習“二項式定理”時,我們會看到它的主要應用.
2.例題分析
例1、(1),求x
(2)
(3)
略解:(1)
(2)
(3)
例2、應用題:
有15本不同的書,其中6本是數學書,問:
分給甲4本,且都不是數學書;
略解:(1)
3.問題拓展
例3.題設同例2:
(2)平均分給3人;
(3)若平均分為3份;
(4)甲分2本,乙分7本,丙分6本;
(5)1人2本,1人7本,1人6本.
略解:(2) (3)
(4) (5)
三、課堂小結
指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.
能列舉出某種方法時,讓學生通過交換元素位置的辦法加以鑒別.
學生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導學生找出兩定義的關系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進行排隊,即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.
排列、組合問題大都來源于同學們生活和學習中所熟悉的情景,解題思路通常是依據具體做事的過程,用數學的原理和語言加以表述.也可以說解排列、組合題就是從生活經驗、知識經驗、具體情景的出發,正確領會問題的實質,抽象出“按部就班”的處理問題的過程.據觀察,有些同學之所以學習中感到抽象,不知如何思考,并不是因為數學知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規的做法).要解決這個問題,需要師生一道在分析問題時要根據實際情況,怎么做事就怎么分析,若能借助適當的工具,模擬做事的過程,則更能說明問題.久而久之,學生的邏輯思維能力將會大大提高.
四、作業布置
(略)
七、教學設計說明
在學習過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學生對于排列與組合兩者的異同有深刻理解,并能自如地進行判斷.
本節課在教學技術上通過多媒體課件大大縮短了教師板書抄題的時間,讓學生能夠更加連貫的思考以及探索問題.
在例題的設計上從最基本的組合數公式的利用,到簡單的應用題,再到組合中較難的分組分配以及平均不平均分配問題的訓練,由淺入深,層層遞進,以積極發揮課堂教學的基礎型和研究型功能,培養學生的基礎性學力和發展性學力.
在課堂教學中教師遵循“以學生為主體”的思想,鼓勵學生善于觀察和發現;鼓勵學生積極思考和探究;鼓勵學生大膽猜想,努力營造一個民主和諧、平等交流的課堂氛圍,采取對話式教學,調動學生學習的積極性,激發學生學習的熱情,使學生開闊思維空間,讓學生積極參與教學活動,提高學生的數學思維能力.
高中數學教案電子版篇2
上個學期,根據需要,學校安排我上高二數學文科,在這一學期里我從各方面嚴格要求自己,在教學上虛心向老教師請教,結合本校和班級學生的實際狀況,針對性的開展教學工作,使工作有計劃,有組織,有步驟。經過了一學期,我對教學工作有了如下感想:
一、認真備課,做到既備學生又備教材與備教法。
上學期我根據教材資料及學生的實際狀況設計課程教學,擬定教學方法,并對教學過程中遇到的問題盡可能的預先思考到,認真寫好教案。每一課都做到“有備而去”,每堂課都在課前做好充分的準備,課后及時對該課作出小結,并認真整理每一章節的知識要點,幫忙學生進行歸納總結。
二、增強上課技能,提高教學質量。
增強上課技能,提高教學質量是我們每一名新教師不斷努力的目標。因為應對的是文科生,基礎普遍比較差,所以我主要是立足于基礎,讓學生學得簡單,學得愉快。注意精講精練,在課堂上講得盡量少些,而讓學生自己動口動手動腦盡量多些;同時在每一堂課上都充分思考每一個層次的學生學習需求和理解潛力,讓各個層次的學生都得到提高。
三、虛心向其他老師學習,在教學上做到有疑必問。
在每個章節的學習上都用心征求其他有經驗老師的意見,學習他們的方法。同時多聽老教師的課,做到邊聽邊學,給自己不斷充電,彌補自己在教學上的不足,征求他們的意見,改善教學工作。
四、認真批改作業、布置作業有針對性,有層次性。
作業是學生對所學知識鞏固的過程。為了做到布置作業有針對性,有層次性,我常常多方面的搜集資料,對各種輔導資料進行篩選,力求每一次練習都能讓學生起到的效果。同時對學生的作業批改及時、認真,并分析學生的作業狀況,將他們在作業過程出現的問題及時評講,并針對反映出的狀況及時改善自己的教學方法,做到有的放矢。
然而,在肯定成績、總結經驗的同時,我清楚地認識到我所獲得的教學經驗還是膚淺的,在教學中存在的問題也不容忽視,也有一些困惑有待解決今后我將努力工作,用心向老老師學習以提高自己的教學水平。
以上幾點便是我的一點心得,期望能發揚優點,克服不足,總結經驗教訓,為今后的教育教學工作積累經驗,以便盡快地提高自己的水平。
高中數學教案電子版篇3
教學目標
1.使學生掌握指數函數的概念,圖象和性質.
(1)能根據定義判斷形如什么樣的函數是指數函數,了解對底數的限制條件的合理性,明確指數函數的定義域.
(2)能在基本性質的指導下,用列表描點法畫出指數函數的圖象,能從數形兩方面認識指數函數的性質.
(3) 能利用指數函數的性質比較某些冪形數的大小,會利用指數函數的圖象畫出形如的圖象.
2. 通過對指數函數的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.
3.通過對指數函數的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣.使學生善于從現實生活中數學的發現問題,解決問題.
教學建議
教材分析
(1) 指數函數是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數函數應重點研究.
(2) 本節的教學重點是在理解指數函數定義的基礎上掌握指數函數的圖象和性質.難點是對底數在和時,函數值變化情況的區分.
(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.
教法建議
(1)關于指數函數的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是指數函數.
(2)對底數
的限制條件的理解與認識也是認識指數函數的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數函數的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.
關于指數函數圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
高中數學教案電子版篇4
【教學目標】
1、知識與技能:
(1)掌握圓的標準方程。
(2)會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程。
(3)會判斷點與圓的位置關系。
2、過程與方法:
(1)進一步培養學生用代數方法研究幾何問題的能力。
(2)加深對數形結合思想的理解和加強待定系數法的運用。
3、情感、態度與價值觀:
(1)培養學生主動探究知識、合作交流的意識。
(2)讓學生感受數學,體驗數學;從走入數學到走出數學,生活處處有數學,數學就在我身邊,體會到數學知識、思想方法和精神來源于生活,還要服務于生活;寓思想教育于教學。讓學生體會到數學的美以及數學的價值與魅力。
【學情分析】
對圓的方程有個初步的認識以及在上章學習了直線與方程的基礎上,學習圓的方程,學生還是可以接受。在教學過程中,主要采用啟發性原則,并且與已經學過的直線方程進行類比,發揮學生的思維能力、想象能力,由易到難,逐步加深。
【重點難點】
重點:圓的標準方程和圓的標準方程特點的明確。
難點:會根據不同的條件寫出圓的標準方程。
【教學過程】
第一學時評論(0)教學目標
教學活動活動1【導入】新聞聯播片段
請結合數學中圓知識,談談你對這句話的理解?
活動2【講授】問題1.
在直角坐標系中,以A(a,b)為圓心,r為半徑的圓上的動點M(x,y)滿足怎樣的關系式?
活動3【活動】想一想!
圓心在坐標原點,半徑長為r的圓的方程是什么?
活動4【導入】試試你的眼力!判斷下列方程是否為圓的標準方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6個可以化為圓的標準方程。
活動5【活動】再試一下!
圓(x1)2+(ay2)2=1a的圓心坐標和半徑分別是什么?
答案:圓心坐標為(1,—2),半徑是√2
活動6【活動】問題2.
要寫出圓的標準方程,只需知道圓的哪些量?
怎樣判斷一點是否在一個圓上?
學生回答,教師點評.
活動7【活動】例1
寫出圓心為A(2,-3),半徑長為5的圓的方程,并判斷點M1(5,7),M2((√5,1)是否在這個圓上。
學生回答,教師點評后,學生閱讀教科書上本題解法.
活動8【活動】探究
你能判斷點M2在圓內還是在圓外嗎?
學生回答,教師點評。
點與圓心距離比半徑大等價于點在圓外。
點與圓心距離比半徑小等價于點在圓內。
點與圓心距離等于半徑等價于點在圓外等價于點的坐標滿足方程。
活動9【講授】解題收獲
1.從確定圓的兩個要素即圓心和半徑入手,直接寫出圓的標準方程——直接法。
2.類似于點與直線方程的關系:點在圓上等價于點坐標滿足圓方程活動10【活動】試一試!
例2△ABC的三個頂點的坐標分別是A(5,1),B(7,-3),C(2,-8),求它的外接圓的方程.
師:△ABC的外接圓的圓心簡稱什么?
學生回答
師:△ABC的外心是什么的交點?
學生回答
師:求圓的標準方程,只需知道圓心坐標和圓的半徑。這三點都在圓上,其坐標一定是滿足所求圓的方程。這樣就可以設出圓的標準方程。
學生閱讀教材例2解法。
師:提示:方程組中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎樣就可以求出圓心坐標和半徑。
活動11【講授】解題收獲
先設出圓的標準方程,再根據已知條件建立方程組,從而求出圓心坐標和半徑的方法——待定系數法。
活動12【活動】動手折一折
請同學們準備一個銳角三角形紙片,能否用手工的方法找到此三角形外接圓的圓心?
學生回答過程.
把三角形的任意兩個頂點重合進行對折,就可以得到邊的垂直平分線,垂直平分線的交點即是三角形的外心。
師:把圓的弦對折,折線一定經過圓心。即圓心一定在弦的垂直平分線上。
活動13【活動】Let’stry
例3已知圓心為C的圓經過點A(1,1)和B(2,-2),且圓心C在直線m:x-y+1=0上,求圓心為C的圓的標準方程。
由學生閱讀例3,學生總結解題步驟。
活動14【講授】解題收獲
由圓的幾何性質直接求出圓心坐標和半徑,然后寫出標準方程——幾何性質法。
活動15【活動】小結
一個方程
三種方法
一種思想
活動16【講授】作業布置
作業:教材P124習題A組第2題和第3題.
課下探究:
(1)平面內到一定點的距離等于定長的點軌跡是圓。點的軌跡是圓的方法很多,請試著找出來,并和其他同學交流。
(2)直線方程有五種形式,圓除了標準方程,還有其它形式嗎?
活動17【導入】結束語
圓心半徑確定圓,
待定系數很普遍;
大家站在同一圓,
彰和諧平等友善;
半徑就像無形線,
把大家心聚一點;
垂直平分折中線,
就能折出同心愿;
中國騰飛之夢圓。
活動18【測試】課堂測試
1.圓C:(x2)2+(y+1)2=3的圓心坐標為()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原點為圓心,2為半徑的圓的標準方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圓心為(1,1)且與直線x+y=4相切的圓的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圓A:(ax+2)2+y2=a+3,則此圓的半徑為______________。
5已知一個圓的圓心在點C(—3,—4),且經過原點。
(1)求該圓的標準方程;
(2)判斷點M(—1,0),N(1,—1),P(3,—4)和圓的位置關系。
6.已知△AOB的頂點坐標分別是A(8,0),B(0,6),O(0,0),求△AOB外接圓的方程.
7求過點A(1,—1)B(—1,1)且圓心在直線x+y2=0上的圓方程
參考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圓內,N在圓上,P在圓外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4
高中數學教案電子版篇5
圓的方程
教學目標
(1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.
(2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.
(3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.
(4)掌握直線和圓的位置關系,會求圓的切線.
(5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.
教學建議
教材分析
(1)知識結構
(2)重點、難點分析
①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.
②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.
教法建議
(1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.
(2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.
(3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.
(4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.
教學設計示例
圓的一般方程
教學目標:
(1)掌握圓的一般方程及其特點.
(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.
(3)能用待定系數法,由已知條件求出圓的一般方程.
(4)通過本節課學習,進一步掌握配方法和待定系數法.
教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.
(2)用待定系數法求圓的方程.
教學難點:圓的一般方程特點的研究.
教學用具:計算機.
教學方法:啟發引導法,討論法.
教學過程:
【引入】
前邊已經學過了圓的標準方程
把它展開得
任何圓的方程都可以通過展開化成形如
①
的方程
【問題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得
②
顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:
(1)當 時,②表示以 為圓心、以 為半徑的圓;
(2)當 時,②表示一個點 ;
(3)當 時,②不表示任何曲線.
總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.
圓的一般方程的定義:
當 時,①表示以 為圓心、以 為半徑的圓,
此時①稱作圓的一般方程.
即稱形如 的方程為圓的一般方程.
【問題2】圓的一般方程的特點,與圓的標準方程的異同.
(1) 和 的系數相同,都不為0.
(2)沒有形如 的二次項.
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標準方程各有千秋:
(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.
【實例分析】
例1:下列方程各表示什么圖形.
(1) ;
(2) ;
(3) .
學生演算并回答
(1)表示點(0,0);
(2)配方得 ,表示以 為圓心,3為半徑的圓;
(3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.
例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.
分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.
解:設圓的方程為
因為 、 、 三點在圓上,則有
解得: , ,
所求圓的方程為
可化為
圓心為 ,半徑為5.
請同學們再用標準方程求解,比較兩種解法的區別.
【概括總結】通過學生討論,師生共同總結:
(1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.
(2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.
下面再看一個問題:
例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.
解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.
∵
∴
即
化簡得
點 在曲線上,并且曲線為圓 內部的一段圓弧.
【練習鞏固】
(1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)
(2)求經過三點 、 、 的圓的方程.
分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .
(3)課本第79頁練習1,2.
【小結】師生共同總結:
(1)圓的一般方程及其特點.
(2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.
(3)用待定系數法求圓的方程.
【作業】課本第82頁5,6,7,8.
高中數學教案電子版篇6
考試要求重難點擊命題展望
1.理解復數的基本概念、復數相等的充要條件.
2.了解復數的代數表示法及其幾何意義.
3.會進行復數代數形式的四則運算.了解復數的代數形式的加、減運算及其運算的幾何意義.
4.了解從自然數系到復數系的關系及擴充的基本思想,體會理性思維在數系擴充中的作用.本章重點:1.復數的有關概念;2.復數代數形式的四則運算.
本章難點:運用復數的有關概念解題.近幾年高考對復數的考查無論是試題的難度,還是試題在試卷中所占比例都是呈下降趨勢,常以選擇題、填空題形式出現,多為容易題.在復習過程中,應將復數的概念及運算放在首位.
知識網絡
15.1復數的概念及其運算
典例精析
題型一復數的概念
【例1】(1)如果復數(m2+i)(1+mi)是實數,則實數m=;
(2)在復平面內,復數1+ii對應的點位于第象限;
(3)復數z=3i+1的共軛復數為z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是實數1+m3=0m=-1.
(2)因為1+ii=i(1+i)i2=1-i,所以在復平面內對應的點為(1,-1),位于第四象限.
(3)因為z=1+3i,所以z=1-3i.
【點撥】運算此類題目需注意復數的代數形式z=a+bi(a,bR),并注意復數分為實數、虛數、純虛數,復數的幾何意義,共軛復數等概念.
【變式訓練1】(1)如果z=1-ai1+ai為純虛數,則實數a等于
A.0B.-1C.1D.-1或1
(2)在復平面內,復數z=1-ii(i是虛數單位)對應的點位于()
A.第一象限B.第二象限C.第三象限D.第四象限
【解析】(1)設z=xi,x0,則
xi=1-ai1+ai1+ax-(a+x)i=0或故選D.
(2)z=1-ii=(1-i)(-i)=-1-i,該復數對應的點位于第三象限.故選C.
題型二復數的相等
【例2】(1)已知復數z0=3+2i,復數z滿足zz0=3z+z0,則復數z=;
(2)已知m1+i=1-ni,其中m,n是實數,i是虛數單位,則m+ni=;
(3)已知關于x的方程x2+(k+2i)x+2+ki=0有實根,則這個實根為,實數k的值為.
【解析】(1)設z=x+yi(x,yR),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
則由復數相等的條件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
則由復數相等的條件得
所以m+ni=2+i.
(3)設x=x0是方程的實根,代入方程并整理得
由復數相等的充要條件得
解得或
所以方程的實根為x=2或x=-2,
相應的k值為k=-22或k=22.
【點撥】復數相等須先化為z=a+bi(a,bR)的形式,再由相等得實部與實部相等、虛部與虛部相等.
【變式訓練2】(1)設i是虛數單位,若1+2i1+i=a+bi(a,bR),則a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,bR,i為虛數單位,則a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
題型三復數的運算
【例3】(1)若復數z=-12+32i,則1+z+z2+z3++z2008=;
(2)設復數z滿足z+z=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一個周期內的和為0,且周期為3.
所以1+z+z2+z3++z2008
=1+z+(z2+z3+z4)++(z2006+z2007+z2008)
=1+z=12+32i.
(2)設z=x+yi(x,yR),則x+yi+x2+y2=2+i,
所以解得所以z=+i.
【點撥】解(1)時要注意x3=1(x-1)(x2+x+1)=0的三個根為1,,-,
其中=-12+32i,-=-12-32i,則
1++2=0,1+-+-2=0,3=1,-3=1,-=1,2=-,-2=.
解(2)時要注意zR,所以須令z=x+yi.
【變式訓練3】(1)復數11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(20__江西鷹潭)已知復數z=23-i1+23i+(21-i)2010,則復數z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.計算容易有11+i+i2=12.
(2)A.
總結提高
復數的代數運算是重點,是每年必考內容之一,復數代數形式的運算:①加減法按合并同類項法則進行;②乘法展開、除法須分母實數化.因此,一些復數問題只需設z=a+bi(a,bR)代入原式后,就可以將復數問題化歸為實數問題來解決.
高中數學教案電子版篇7
教學目標
1。 理解的定義,初步掌握的圖象,性質及其簡單應用。
2。 通過的圖象和性質的學習,培養學生觀察,分析,歸納的能力,進一步體會數形結合的思想方法。
3。 通過對的研究,使學生能把握函數研究的基本方法,激發學生的學習興趣。
教學重點和難點
重點是理解的定義,把握圖象和性質。
難點是認識底數對函數值影響的認識。
教學用具
投影儀
教學方法
啟發討論研究式
教學過程
一。 引入新課
我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的常見函數———————。
1。6。(板書)
這類函數之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
問題1:某種細胞_時,由1個_成2個,2個_成4個,……一個這樣的細胞_ 次后,得到的細胞_的個數 與 之間,構成一個函數關系,能寫出 與 之間的函數關系式嗎?
由學生回答: 與 之間的關系式,可以表示為 。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了 次后繩子剩余的長度為 米,試寫出 與 之間的函數關系。
由學生回答: 。
在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區別,從形式上冪的形式,且自變量 均在指數的位置上,那么就把形如這樣的函數稱為。
一。 的概念(板書)
1。定義:形如 的函數稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2。幾點說明 (板書)
(1) 關于對 的規定:
教師首先提出問題:為什么要規定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若 會有什么問題?如 ,此時 , 等在實數范圍內相應的函數值不存在。
若 對于 都無意義,若 則 無論 取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發生,所以規定 且 。
(2)關于的定義域 (板書)
教師引導學生回顧指數范圍,發現指數可以取有理數。此時教師可指出,其實當指數為無理數時, 也是一個確定的實數,對于無理指數冪,學過的有理指數冪的性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以的定義域為 。擴充的另一個原因是因為使她它更具代表更有應用價值。
(3)關于是否是的判斷(板書)
剛才分別認識了中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是,請看下面函數是否是。
(1) , (2) , (3)
(4) , (5) 。
學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是,其中(3) 可以寫成 ,也是指數圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。
3。歸納性質
作圖的用什么方法。用列表描點發現,教師準備明確性質,再由學生回答。
函數
1。定義域 :
2。值域:
3。奇偶性 :既不是奇函數也不是偶函數
4。截距:在 軸上沒有,在 軸上為1。
對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數圖象畫圖的依據。(圖象位于 軸上方,且與 軸不相交。)
在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故 的值應有正有負,且由于單調性不清,所取點的個數不能太少。
此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據。連點成線時,一定提醒學生圖象的變化趨勢(當 越小,圖象越靠近 軸, 越大,圖象上升的越快),并連出光滑曲線。
二。圖象與性質(板書)
1。圖象的畫法:性質指導下的列表描點法。
2。草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且 ,取值可分為兩段)讓學生明白需再畫第二個,不妨取 為例。
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是的方法,而圖象變換的方法更為簡單。即 = 與 圖象之間關于 軸對稱,而此時 的圖象已經有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到 的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如 的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個 的表,將相應的內容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質。
3。性質。
(1)無論 為何值, 都有定義域為 ,值域為 ,都過點 。
(2) 時, 在定義域內為增函數, 時, 為減函數。
(3) 時, , 時, 。
總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質。
三。簡單應用 (板書)
1。利用單調性比大小。 (板書)
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1。 比較下列各組數的大小
(1) 與 ; (2) 與 ;
(3) 與1 。(板書)
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同。再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小。然后以第(1)題為例,給出解答過程。
解: 在 上是增函數,且< 。(板書)
教師最后再強調過程必須寫清三句話:
(1) 構造函數并指明函數的單調區間及相應的單調性。
(2) 自變量的大小比較。
(3) 函數值的大小比較。
后兩個題的過程略。要求學生仿照第(1)題敘述過程。
例2。比較下列各組數的大小
(1) 與 ; (2) 與 ;
(3) 與 。(板書)
先讓學生觀察例2中各組數與例1中的區別,再思考解決的方法。引導學生發現對(1)來說 可以寫成 ,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說 可以寫成 ,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數值與1有關,可以用1來起橋梁作用)
最后由學生說出 >1,<1,>。
解決后由教師小結比較大小的方法
(1) 構造函數的方法: 數的特征是同底不同指(包括可轉化為同底的)
(2) 搭橋比較法: 用特殊的數1或0。
三。鞏固練習
練習:比較下列各組數的大小(板書)
(1) 與 (2) 與 ;
(3) 與 ; (4) 與 。解答過程略
四。小結
1。的概念
2。的圖象和性質
3。簡單應用
五 。板書設計
高中數學教案電子版篇8
課題:
等比數列的概念
教學目標
1、通過教學使學生理解等比數列的概念,推導并掌握通項公式、
2、使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力、
3、培養學生勤于思考,實事求是的精神,及嚴謹的科學態度、
教學重點,難點
重點、難點是等比數列的定義的歸納及通項公式的推導、
教學用具
投影儀,多媒體軟件,電腦、
教學方法
討論、談話法、
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準、(幻燈片)
①—2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
⑦1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列)、
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數
這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數列(板書)
1、等比數列的定義(板書)
根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義、學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的教師寫出等比數列的定義,標注出重點詞語、
請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列、學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數列的一般形式,學生可能說形如的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當時,數列既是等差又是等比數列,當時,它只是等差數列,而不是等比數列、教師追問理由,引出對等比數列的認識:
2、對定義的認識(板書)
(1)等比數列的首項不為0;
(2)等比數列的每一項都不為0,即
問題:一個數列各項均不為0是這個數列為等比數列的什么條件?
(3)公比不為0、
用數學式子表示等比數列的定義、
是等比數列
①、在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學生研究行不行,好不好;接下來再問,能否改寫為
是等比數列?為什么不能?式子給出了數列第項與第
項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
②疊乘法,…,,這個式子相乘得,所以(板書)
(1)等比數列的通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)
(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已)、
這里強調方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究、同學可以試著編幾道題。
三、小結
1、本節課研究了等比數列的概念,得到了通項公式;
2、注意在研究內容與方法上要與等差數列相類比;
3、用方程的思想認識通項公式,并加以應用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數算也行)。