高一數學新穎教案
高一數學新穎教案篇1
1.教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用.
2.設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標.
3.教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題.
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用.
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美.
4.重點難點
重點:任意角三角函數的定義.
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透.
5.學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念.在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構.
6.教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構.這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用.
7.學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標.
8.教學設計(過程)
一、引入
問題1:我們已經學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?
問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?
問題3:當角clip_image002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數量?圓周運動的這些量之間的關系能用一個函數模型來刻畫嗎?
二、原有認知結構的改造和重構
問題4:當角clip_image002[1]是銳角時,clip_image004,線段OP的長度clip_image006這幾個量之間有何關系?
學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數
學生閱讀教材,并思考:
問題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來理解它?
學生討論并回答
三、新概念的形成
問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?
學生回答,并閱讀教材,得到任意角三角函數的定義.并思考:
問題7:任意角三角函數的定義符合我們高中所學的函數定義嗎?
展示任意角三角函數的定義,并指出它是如何刻劃圓周運動的
并類比函數的研究方法,得出任意角三角函數的定義域和值域。
四、概念的運用
1.基礎練習
①口算clip_image008的值.
②分別求clip_image010的值
小結:ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值
ⅱ)誘導公式(一)
③若clip_image012,試寫出角clip_image002[2]的值。
④若clip_image015,不求值,試判斷clip_image017的符號
⑤若clip_image019,則clip_image021為第象限的角.
例1.已知角clip_image002[3]的終邊過點clip_image024,求clip_image026之值
若P點的坐標變為clip_image028,求clip_image030的值
小結:任意角三角函數的等價定義(終邊定義法)
例2.一物體A從點clip_image032出發,在單位圓上沿逆時針方向作勻速圓周運動,若經過的弧長為clip_image034,試用clip_image034[1]表示物體A所在位置的坐標。若該物體作圓周運動的圓的半徑變為clip_image006[1],如何用clip_image034[2]來表示物體A所在位置的坐標?
小結:可以采用三角函數模型來刻畫圓周運動
五、拓展探究
問題8:當角clip_image002[4]的終邊繞頂點O作圓周運動時,角clip_image002[5]的終邊與單位圓的交點clip_image039的坐標clip_image041clip_image043與角clip_image002[6]之間還可以建立其它函數模型嗎?
思考:引入平面直角坐標系后,我們可以把圓周運動用數來刻畫,這是將“形”轉化成為“數”;角clip_image002[7]正弦值是一個數,你能借助平面直角坐標系和單位圓,用“形”來表示這個“數”嗎?角clip_image002[8]余弦值、正切值呢?
六、課堂小結
問題9:請你談談本節課的收獲有哪些?
七、課后作業
教材P21第6、7、8題
高一數學新穎教案篇2
一、目的要求
結合集合的圖形表示,理解交集與并集的概念。
二、內容分析
1.這小節繼續研究集合的運算,即集合的交、并及其性質。
2.本節課的重點是交集與并集的概念,難點是弄清交集與并集的概念,符號之間的區別與聯系。
三、教學過程
復習提問:
1.說出A的意義。
2.填空:如果全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么,
A=_________,B=__________。
(A={0,2,4},B={0,2,3,5})
新課講解:
1.觀察下面兩個圖的陰影部分,它們同集合A、集合B有什么關系?
2.定義:
(1)交集:A∩B={x∈A,且x∈B}。
(2)并集:A∪B={x∈A,且x∈B}。
3.講解教科書1.3節例1-例5。
組織討論:
觀察下面表示兩個集合A與B之間關系的5個圖,根據這些圖分別討論A∩B與A∪B。
(2)中A∩B=φ。
(3)中A∩B=B,A∪B=A。
(4)中A∩B=A,A∪B=B。
(5)中A∩B=A∪B=A=B。
課堂練習:
教科書1.3節第一個練習第1~5題。
拓廣引申:
在教科書的例3中,由A={3,5,6,8},B={4,5,7,8},得
A∪B={3,5,6,8}∪{4,5,7,8}
={3,4,5,6,7,8}
我們研究一下上面三個集合中的元素的個數問題。我們把有限集合A的元素個數記作card(A)=4,card(B)=4,card(A∪B)=6.
顯然,
card(A∪B)≠card(A)+card(B)
這是因為集合中的元素是沒有重復現象的,在兩個集合的公共元素只能出現一次。那么,怎樣求card(A∪B)呢?不難看出,要扣除兩個集合的公共元素的個數,即card(A∩B)。在上例中,card(A∩B)=2。
一般地,對任意兩個有限集合A,B,有
card(A∪B)=card(A)+card(B)-card(A∩B)。
四、布置作業
1.教科書習題1.3第1~5題。
2.選作:設集合A={x|-4≤x<2},B={-1<x≤3},c={}。< p="">
求A∩B∩C,A∪B∩C。
(A∩B∩C={-1<x≤0},a∪b∩c=r)< p="">
高一數學新穎教案篇3
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數的認識,了解依賴關系中有的是函數關系,有的則不是函數關系.
2.培養廣泛聯想的能力和熱愛數學的態度.
二、教學重點:
在于讓學生領悟生活中處處有變量,變量之間充滿了關系
教學難點:培養廣泛聯想的能力和熱愛數學的態度
三、教學方法:
探究交流法
四、教學過程
(一)、知識探索:
閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。
在高速公路情景下,你能發現哪些函數關系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數關系嗎?
問題小結:
1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數關系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應,才稱它們之間有函數關系。
2.構成函數關系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應。
3.確定變量的依賴關系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數概念
1.初中關于函數的定義:
2.從集合的觀點出發,函數定義:
給定兩個非空數集A和B,如果按照某個對應關系f,對于A中的任何一個數x,在集合B中都存在確定的數f(x)與之對應,那么就把這種對應關系f叫做定義在A上的函數,記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數的定義域,集合{f(x)︱x∈A}叫作函數的值域。習慣上我們稱y是x的函數。
定義域,值域,對應法則
4.函數值
當x=a時,我們用f(a)表示函數y=f(x)的函數值。
高一數學新穎教案篇4
教學目的:
(1)使學生初步理解集合的概念,知道常用數集的概念及記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教具:多媒體、實物投影儀
內容分析:
1.集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯
本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節課主要學習全章的引言和集合的基本概念學習引言是引發學生的學習興趣,使學生認識學習本章的意義本節課的教學重點是集合的基本概念
集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明
教學過程:
一、復習引入:
1.簡介數集的發展,復習公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合記作N,
(2)正整數集:非負整數集內排除0的集記作N_或N+
(3)整數集:全體整數的集合記作Z,
(4)有理數集:全體有理數的集合記作Q,
(5)實數集:全體實數的集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集記作N_或N+Q、Z、R等其它
數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z_
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,
或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(不確定)
(2)好心的人(不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__
4、由實數x,-x,|x|,所組成的集合,最多含(A)
(A)2個元素(B)3個元素(C)4個元素(D)5個元素
5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:
(1)當x∈N時,x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
則x=x+0_=a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整數,
∴=不一定屬于集合G
四、小結:本節課學習了以下內容:
1.集合的有關概念:(集合、元素、屬于、不屬于)
2.集合元素的性質:確定性,互異性,無序性
3.常用數集的定義及記法
五、課后作業:
六、板書設計(略)
七、課后記:
高一數學新穎教案篇5
一元二次不等式的解法
教學目標
(1)掌握一元二次不等式的解法;
(2)知道一元二次不等式可以轉化為一元一次不等式組;
(3)了解簡單的分式不等式的解法;
(4)能利用二次函數與一元二次方程來求解一元二次不等式,理解它們三者之間的內在聯系;
(5)能夠進行較簡單的分類討論,借助于數軸的直觀,求解簡單的含字母的一元二次不等式;
(6)通過利用二次函數的圖象來求解一元二次不等式的解集,培養學生的數形結合的數學思想;
(7)通過研究函數、方程與不等式之間的內在聯系,使學生認識到事物是相互聯系、相互轉化的,樹立辨證的世界觀.
教學重點:一元二次不等式的解法;
教學難點:弄清一元二次不等式與一元二次方程、二次函數的關系.
教與學過程設計
第一課時
Ⅰ.設置情境
問題:
①解方程
②作函數 的圖像
③解不等式
【置疑】在解決上述三問題的基礎上分析,一元一次函數、一元一次方程、一元一次不等式之間的關系。能通過觀察一次函數的圖像求得一元一次不等式的解集嗎?
【回答】函數圖像與x軸的交點橫坐標為方程的根,不等式 的解集為函數圖像落在x軸上方部分對應的橫坐標。能。
通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運用
在這里我們發現一元一次方程,一次不等式與一次函數三者之間有著密切的聯系。利用這種聯系(集中反映在相應一次函數的圖像上!)我們可以快速準確地求出一元一次不等式的解集,類似地,我們能不能將現在要求解的一元二次不等式與二次函數聯系起來討論找到其求解方法呢?
Ⅱ.探索與研究
我們現在就結合不等式 的求解來試一試。(師生共同活動用“特殊點法”而非課本上的“列表描點”的方法作出 的圖像,然后請一位程度中下的同學寫出相應一元二次方程及一元二次不等式的解集。)
【答】方程 的解集為
不等式 的解集為
【置疑】哪位同學還能寫出 的解法?(請一程度差的同學回答)
【答】不等式 的解集為
我們通過二次函數 的圖像,不僅求得了開始上課時我們還不知如何求解的那個第(5)小題 的解集,還求出了 的解集,可見利用二次函數的圖像來解一元二次不等式是個十分有效的方法。
下面我們再對一般的一元二次不等式 與 來進行討論。為簡便起見,暫只考慮 的情形。請同學們思考下列問題:
如果相應的一元二次方程 分別有兩實根、惟一實根,無實根的話,其對應的二次函數 的圖像與x軸的位置關系如何?(提問程度較好的學生)
【答】二次函數 的圖像開口向上且分別與x軸交于兩點,一點及無交點。
現在請同學們觀察表中的二次函數圖,并寫出相應一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)
【答】 的解集依次是
的解集依次是
它是我們今后求解一元二次不等式的主要工具。應盡快將表中的結果記住。其關鍵就是抓住相應二次函數 的圖像。
課本第19頁上的例1.例2.例3.它們均是求解二次項系數 的一元二次不等式,卻都沒有給出相應二次函數的圖像。其解答過程雖很簡練,卻不太直觀。現在我們在課本預留的位置上分別給它們補上相應二次函數圖像。
(教師巡視,重點關注程度稍差的同學。)
Ⅲ.演練反饋
1.解下列不等式:
(1) (2)
(3) (4)
2.若代數式 的值恒取非負實數,則實數x的取值范圍是 。
3.解不等式
(1) (2)
參考答案:
1.(1) ;(2) ;(3) ;(4)R
2.
3.(1)
(2)當 或 時, ,當 時,
當 或 時, 。
Ⅳ.總結提煉
這節課我們學習了二次項系數 的一元二次不等式的解法,其關鍵是抓住相應二次函數的圖像與x軸的交點,再對照課本第39頁上表格中的結論給出所求一元二次不等式的解集。
(五)、課時作業
(P20.練習等3、4兩題)
(六)、板書設計
第二課時
Ⅰ.設置情境
(通過講評上一節課課后作業中出現的問題,復習利用“三個二次”間的關系求解一元二次不等式的主要操作過程。)
上節課我們只討論了二次項系數 的一元二次不等式的求解問題。肯定有同學會問,那么二次項系數 的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?
Ⅱ.探索研究
(學生議論紛紛.有的說仍然利用二次函數的圖像,有的說將二次項的系數變為正數后再求解,…….教師分別請持上述見解的學生代表進一步說明各自的見解.)
生甲:只要將課本第39頁上表中的二次函數圖像次依關于x軸翻轉變成開口向下的拋物線,再根據可得的圖像便可求得二次項系數 的一元二次不等式的解集.
生乙:我覺得先在不等式兩邊同乘以-1將二次項系數變為正數后直接運用上節課所學的方法求解就可以了.
師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學們則需再記住一張類似于第39頁上的表格中的各結論.這不但加重了記憶負擔,而且兩表中的結論容易搞混導致錯誤.而按后一種見解來操作時則不存在這個問題,請同學們閱讀第19頁例4.
(待學生閱讀完畢,教師再簡要講解一遍.)
[知識運用與解題研究]
由此例可知,對于二次項系數的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節課所學過的方法。我們就能求
解任意一個一元二次不等式了,請同學們求解以下兩不等式.(調兩位程度中等的學生演板)
(1) (2)
(分別為課本P21習題1.5中1大題(2)、(4)兩小題.教師講評兩位同學的解答,注意糾正表述方面存在的問題.)
訓練二 可化為一元一次不等式組來求解的不等式.
目前我們熟悉了利用“三個二次”間的關系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如 (或 )的一元二次不等式時則根據(有理數)乘(除)運算的“符號法則”化為同學們更加熟悉的一元一次不等式組來求解.現在清同學們閱讀課本P20上關于不等式 求解的內容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學生閱讀完畢,請一程度較好,表達能力較強的學生回答該問題.)
【答】因為滿足不等式組 或 的x都能使原不等式 成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.
這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關系,故它們必相等,現在請同學們求解以下各不等式.(調三位程度各異的學生演板.教師巡視,重點關注程度較差的學生).
(1) [P20練習中第1大題]
(2) [P20練習中第1大題]
(3) [P20練習中第2大題]
(老師扼要講評三位同學的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).
例5 解不等式
因為(有理數)積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。
解:(略)
現在請同學們完成課本P21練習中第3、4兩大題。
(等學生完成后教師給出答案,如有學生對不上答案,由其本人追查原因,自行糾正。)
[訓練三]用“符號法則”解不等式的復式訓練。
(通過多媒體或其他載體給出下列各題)
1.不等式 與 的解集相同此說法對嗎?為什么[補充]
2.解下列不等式:
(1) [課本P22第8大題(2)小題]
(2) [補充]
(3) [課本P43第4大題(1)小題]
(4) [課本P43第5大題(1)小題]
(5) [補充]
(每題均先由學生說出解題思路,教師扼要板書求解過程)
參考答案:
1.不對。同 時前者無意義而后者卻能成立,所以它們的解集是不同的。
2.(1)
(2)原不等式可化為: ,即
解集為 。
(3)原不等式可化為
解集為
(4)原不等式可化為 或
解集為
(5)原不等式可化為: 或 解集為
Ⅲ.總結提煉
這節課我們重點講解了利用(有理數)乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學們應掌握好這一方法。
(五)布置作業
(P22.2(2)、(4);4;5;6。)
(六)板書設計
高一數學新穎教案篇6
教學目標
1.使學生了解反函數的概念;
2.使學生會求一些簡單函數的反函數;
3.培養學生用辯證的觀點觀察、分析解決問題的能力。
教學重點
1.反函數的概念;
2.反函數的求法。
教學難點
反函數的概念。
教學方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數的定義、記法、習慣記法。(記作A);
第二張:本課時作業中的預習內容及提綱。
教學過程
(I)講授新課
(檢查預習情況)
師:這節課我們來學習反函數(板書課題)§2.4.1反函數的概念。
同學們已經進行了預習,對反函數的概念有了初步的了解,誰來復述一下反函數的定義、記法、習慣記法?
生:(略)
(學生回答之后,打出幻燈片A)。
師:反函數的定義著重強調兩點:
(1)根據y=f(x)中x與y的關系,用y把x表示出來,得到x=φ(y);
(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應。
師:應該注意習慣記法是由記法改寫過來的。
師:由反函數的定義,同學們考慮一下,怎樣的映射確定的函數才有反函數呢?
生:一一映射確定的函數才有反函數。
(學生作答后,教師板書,若學生答不來,教師再予以必要的啟示)。
師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數值;后者y是自變量,x是函數值。)
在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請同學們談一下,函數y=f(x)與它的反函數y=f–1(x)兩者之間,定義域、值域存在什么關系呢?
生:(學生作答,教師板書)函數的定義域,值域分別是它的反函數的值域、定義域。
師:從反函數的概念可知:函數y=f(x)與y=f–1(x)互為反函數。
從反函數的概念我們還可以知道,求函數的反函數的方法步驟為:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)將x=f–1(y)改寫成y=f–1(x),即對調x=f–1(y)中的x、y。
(3)指出反函數的定義域。
下面請同學自看例1
(II)課堂練習課本P68練習1、2、3、4。
(III)課時小結
本節課我們學習了反函數的概念,從中知道了怎樣的映射確定的函數才有反函數并求函數的反函數的方法步驟,大家要熟練掌握。
(IV)課后作業
一、課本P69習題2.41、2。
二、預習:互為反函數的函數圖象間的關系,親自動手作題中要求作的圖象。
板書設計
課題:求反函數的方法步驟:
定義:(幻燈片)
注意:小結
一一映射確定的
函數才有反函數
函數與它的反函
數定義域、值域的關系。
高一數學新穎教案篇7
一、指導思想與理論依據
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
二、教材分析
三角函數的誘導公式是普通高中課程標準實驗教科書(人教A版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與、、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.
三、學情分析
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;
(3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;
(4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數值,化簡三角函數式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.
3.預期效果
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
七、教學流程設計
(一)創設情景
1.復習銳角300,450,600的三角函數值;
2.復習任意角的三角函數定義;
3.問題:由,你能否知道sin2100的值嗎?引如新課.
設計意圖
自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
(二)新知探究
1.讓學生發現300角的終邊與2100角的終邊之間有什么關系;
2.讓學生發現300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
3.Sin2100與sin300之間有什么關系.
設計意圖
由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角與的三角函數值的關系做好鋪墊.
(三)問題一般化
探究一
1.探究發現任意角的終邊與的終邊關于原點對稱;
2.探究發現任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
3.探究發現任意角與的三角函數值的關系.
設計意圖
首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進
(四)練習
利用誘導公式(二),口答下列三角函數值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題.
(五)問題變形
由sin3000=-sin600出發,用三角的定義引導學生求出sin(-3000),Sin1500值,讓學生聯想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學生自主探究