欧美一级高清在线观看,亚洲第一福利视频,高清在线一区二区,国产成人精品第一区二区

寫方案網 > 教學教案 > 數學教案 >

初二數學教案怎么寫

時間: 新華 數學教案

新課指南

1.知識與技能:(1)在具體情境中了解代數式及代數式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養學生用字母表示數和探索數學規律的能力.

2.過程與方法:經歷探索規律并用代數式表示規律的過程,學會列簡單的代數式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的實際問題.

3.情感態度與價值觀:通過對整式加減的學習,深入體會代數式在實際生活中的應用,它為后面學習方程(組)、不等式及函數等知識打下良好的基礎,同時,也使我們體會到數學知識的產生來源于實際生產和生活的需求,反之,它又服務于實際生活的方方面面.

4.重點與難點:重點是用含有字母的式子表式規律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規律的過程及用代數式表示規律的方法,以及準確識別整式的項、系數等知識.

教材解讀精華要義

數學與生活

如圖15-1所示,用同樣規格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.

思考討論由圖15-1可以看到,當n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發現:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數等于n加上3,一豎列的瓷磚數等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數,即代數式,你還能舉出這樣用字母表示數的例子嗎?

知識詳解

知識點1代數式

用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數和表示數.的字母連接起來的式子叫做代數式.單獨的一個數或一個字母也是代數式.

例如:5,a,(a+b),ab,a2-2ab+b2等等.

知識點2列代數式時應該注意的問題

(1)數與字母、字母與字母相乘時常省略“×”號或用“·”.

如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

(2)數字通常寫在字母前面.

如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

(3)帶分數與字母相乘時要化成假分數.

如:2×ab=ab,切勿錯誤寫成“2ab”.

(4)除法常寫成分數的形式.

如:S÷x=.

初二數學教案怎么寫篇2

教學

目標1聯系生活中的具體事物,通過觀察和動手操作,初步體會生活中的對稱現象,認識軸對稱圖形的基本特征,會識別并能做出一些簡單的軸對稱圖形。

2.在認識、制作和欣賞軸對稱圖形的過程中,感受到物體圖形的對稱美,激發學生對數學學習的積極情感。

重點

難點理解軸對稱圖形的基本特征

教具

準備剪刀、紙(含平行四邊形、字母NS)、教學掛圖、直尺

教學

方法

手段觀察、比較、討論、動手操作

教學

過程一.新課

1.教師取一個門框上固定門的鉸連讓學生觀察是不是左右對稱?

2.出示教學掛圖:_、飛機、獎杯的實物圖片

將實物圖片進一步抽象為平面圖形,對折以后問學生發現了什么?

生:對折后兩邊能完全重合。

師;對折后能完全重合的圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。

教師先示范,讓學生認識_城樓圖的對稱軸,然后讓學生再找出飛機圖、獎杯圖的對稱軸各在哪里。

3.練習:(出示小黑板)

(1)P57“試一試”

判斷哪幾個圖形是軸對稱圖形?試著畫出對稱軸。

估計學生會將平行四邊形看作是軸對稱圖形,可讓兩個學生到講臺前用平行四邊形紙對折一下,看對折以后兩部分是否完全重合。由此得出結論;平行四邊形不是軸對稱圖形。

(2)用剪刀和紙剪一個軸對稱圖形。

初二數學教案怎么寫篇3

探索勾股定理(二)

教學目標:

1.經歷運用拼圖的方法說明勾股定理是正確的過程,在數學活動中發展學生的探究意識和合作交流的習慣。

2.掌握勾股定理和他的簡單應用

重點難點:

重點:能熟練運用拼圖的方法證明勾股定理

難點:用面積證勾股定理

教學過程

七、創設問題的情境,激發學生的學習熱情,導入課題

我們已經通過數格子的方法發現了直角三角形三邊的關系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

(同學們回答有這幾種可能:(1)(2))

在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

=請同學們對上面的式子進行化簡,得到:即=

這就可以從理論上說明勾股定理存在。請同學們去用別的拼圖方法說明勾股定理。

八、講例

1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

分析:根據題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

解:由勾股定理得

即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

答:飛機每個小時飛行540千米。

九、議一議

展示投影2(書中的圖1—9)

觀察上圖,應用數格子的方法判斷圖中的三角形的三邊長是否滿足

同學在議論交流形成共識之后,老師總結。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作業

1、1、課文P11§1.21、2

2、選用作業。

初二數學教案怎么寫篇4

一、學習目標:讓學生了解多項式公因式的意義,初步會用提公因式法分解因式

二、重點難點

重點:能觀察出多項式的公因式,并根據分配律把公因式提出來

難點:讓學生識別多項式的公因式.

三、合作學習:

公因式與提公因式法分解因式的概念.

三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)

既ma+mb+mc=m(a+b+c)

由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。

四、精講精練

例1、將下列各式分解因式:

(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3)a(x-3)+2b(x-3)

通過剛才的練習,下面大家互相交流,總結出找公因式的一般步驟.

首先找各項系數的____________________,如8和12的公約數是4.

其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數取次數最___________的.

課堂練習

1.寫出下列多項式各項的公因式.

(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72(2)a2b-5ab

(3)4m3-6m2(4)a2b-5ab+9b

(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2

五、小結:

總結出找公因式的一般步驟.:

首先找各項系數的大公約數,

其次找各項中含有的相同的字母,相同字母的指數取次數最小的.

注意:(a-b)2=(b-a)2

六、作業1、教科書習題

2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20__+(-2)20__

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

初二數學教案怎么寫篇5

教材分析

1.本小節內容安排在第十四章“軸對稱”的第三節。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質。這一節的主要內容是等腰三角形的性質與判定,以及等邊三角形的相關知識,重點是等腰三角形的性質與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據,這也是全章的重點之一。

2.本節重在呈現一個動手操作得出概念、觀察實驗得出性質、推理證明論證性質的過程,學生通過學習,既體會到一個觀察、實驗、猜想、論證的研究幾何圖形問題的全過程,又能夠運用等腰三角形的性質解決有關的問題,提高運用知識和技能解決問題的能力。

學情分析

1.學生在此之前已接觸過等腰三角形,具有運用全等三角形的判定及軸對稱的知識和技能,本節教學要突出“自主探究”的特點,即教師引導學生通過觀察、實驗、猜想、論證,得出等腰三角形的性質,讓學生做學習的主人,享受探求新知、獲得新知的樂趣。

2.在與等腰三角形有關的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學生的學習帶來困難。另外,以前學生證明問題是習慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質的問題,沒有注意選擇簡便方法。

教學目標

知識技能:1、理解掌握等腰三角形的性質。

2、運用等腰三角形的性質進行證明和計算。

數學思考:1、觀察等腰三角形的對稱性,發展形象思維。

2、通過時間、觀察、證明等腰三角形性質,發展學生合情推理能力和演繹推理能力。

情感態度:引導學生對圖形的觀察、發現,激發學生的好奇心和求知欲,并在運用數學知識解決問題的活動中獲取成功的體驗,建立學習的自信心。

教學重點和難點

重點:等腰三角形的性質及應用。

難點:等腰三角形的性質證明。

初二數學教案怎么寫篇6

一、教學目的

1、掌握菱形概念,知道菱形與平行四邊形的關系。

2、理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積。

3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力。

4、根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想。

二、重點、難點

1、教學重點:

菱形的性質1、2。

2、教學難點:

菱形的性質及菱形知識的綜合應用。

三、課堂引入

1、(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?

2、(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念。

菱形定義:有一組鄰邊相等的平行四邊形叫做菱形。

【強調】菱形(1)是平行四邊形;(2)一組鄰邊相等。

讓學生舉一些日常生活中所見到過的菱形的例子。

四、例習題分析

例1(補充)已知:如圖,四邊形ABCD是菱形,F是AB上一點,DF交AC于E。

求證:∠AFD=∠CBE。

證明:∵四邊形ABCD是菱形,

∴CB=CD,CA平分∠BCD。

∴∠BCE=∠DCE。又CE=CE,

∴△BCE≌△COB(SAS)。

∴∠CBE=∠CDE。

∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC

∴∠AFD=∠CBE。

例2(教材P108例2)略

五、隨堂練習

1、若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為。

2、已知菱形的兩條對角線分別是6cm和8cm,求菱形的周長和面積。

3、已知菱形ABCD的周長為20cm,且相鄰兩內角之比是1∶2,求菱形的對角線的長和面積。

4、已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF。求證:∠AEF=∠AFE。

六、課后練習

1、菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為8cm,求菱形的高。

2、如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求(1)對角線AC的長度;(2)菱形ABCD的面積。

初二數學教案怎么寫篇7

教學目標:

1.通過把長方形或正方形折、剪、拼等活動,直觀認識三角形和平行四邊形,知道這兩個圖形的名稱;并能識別三角形和平行四邊形,初步知道它們在日常生活中的應用。

2.在折圖形、剪圖形、拼圖形等活動中,體會圖形的變換,發展對圖形的空間想象能力。

3.在學習活動中積累對數學的興趣,增強與同學交往、合作的意識。

教學重點:直觀認識三角形和平行四邊形,知道它們的名稱,并能識別這些圖形,知道它們在日常生活中的應用。

教學難點:讓學生動手在釘子板上圍、用小棒拼平行四邊形。

教學用具:長方形模型、長方形和正方形的紙、課件、小棒。

教學方法:實踐操作法

教學過程:

一、復習鋪墊

出示長方形問“小朋友們,誰愿意來介紹一下這位老朋友?他介紹得對嗎?”接著出示第二個圖形(正方形),問:“這個老朋友又是誰呢?”再出示圓:“它叫什么名字?這是我們已經認識的長方形、正方形和圓三位老朋友。我發現你們很喜歡折紙,是嗎?今天我特意為大家準備了一個折紙的游戲,高興嗎?

二、啟發思維、引出新知

1.認識三角形

(1)教師出示一張正方形紙,提問:這是什么圖形?

學生回答:這是正方形。

師:你能把一張正方形紙對折成一樣的兩部分嗎?

學生活動,教師巡視,了解學生折紙的情況。

組織學生交流你是怎樣折的,折出了什么圖形?

師:我們現在折出來的是一個什么圖形呢?

生答:三角形。

師:小朋友們一下就認識了我們的新朋友。對了,這就是三角形。出示并貼上三角形。

板書:三角形

(2)提問:這樣的圖形好像在哪兒也看到過?想一想?

①先在小組里交流。

②學生回答。

③老師也帶來了幾個三角形。

(3)師小結:在我們的生活中有許多物體的面是三角形面,只要小朋友多觀察,就會有更多的發現。

2.認識平行四邊形

(1)這是一張什么形狀的紙?(演示長方形紙)怎樣折一下,把它折成兩個完全一樣的三角形?

(2)學生先想一想,然后同桌商量著試折。教師巡視

(3)交流。你們會像他一樣折嗎?

(4)折好后把兩個三角形剪下來。要想知道這兩個三角形是不是完全一樣,你能有什么辦法?(把它們疊在一起)這就是完全一樣。

(5)現在我們手里都有這樣兩個一樣的三角形,用它們拼一拼,看看能拼出什么圖形?學生分組活動,教師巡視。

交流探討。同學們可能拼出以下幾種圖形:三角形、長方形、四邊形、平行四邊形。每出現一種拼法,請一位同學在投影儀上向大家展示。師:這個圖形真漂亮,它叫什么名字呀!這個圖形就是我們要認識的另一個新朋友——平行四邊形。(出示圖形,并板書:平行四邊形)(板書)

出示一個長方形的模型,提問:“這個圖形的面是一個什么圖形?”學生回答后,老師將這個長方形輕輕拉動,這時出現的是一個平行四邊形。提問:“現在這個圖形的面變成了一個什么圖形?”

小結:我們已經認識了長方形,其實只要把它稍微變一變,就是一個平行四邊形了,你看:(演示長方形變平行四邊形)。對我們生活中有很多地方就利用了平行四邊形可以變的特點制作了很多東西,如:籬笆、樓梯、伸縮門、可拉伸的衣架等。

三、體驗深化

板書設計

認識圖形(二)

認識三角形平行四邊形

三角形平行四邊形

23741