高二數學反思教案
高二數學反思教案篇1
教材分析
因式分解是代數式的一種重要恒等變形。《數學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數運算中的重要作用。本章教材是在學生學習了整式運算的基礎上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯系。分解因式的變形不僅體現了一種“化歸”的思想,而且也是解決后續—分式的化簡、解方程等—恒等變形的基礎,為數學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現在使學生接受對立統一的觀點,培養學生善于觀察、善于分析、正確預見、解決問題的能力。
學情分析
通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
教學目標
1、在分解因式的過程中體會整式乘法與因式分解之間的聯系。
2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發展觀察、歸納、類比、等能力,發展有條理地思考及語言表達能力。
3、能運用提公因式法、公式法進行綜合運用。
4、通過活動4,能將高偶指數冪轉化為2次指數冪,培養學生的化歸思想。
教學重點和難點
重點:靈活運用平方差公式進行分解因式。
難點:平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
高二數學反思教案篇2
教材分析教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的.思想,培養學生歸納、概括等合情推理能力。
通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。
[情感與態度目標]
通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。
三、教法選擇
引導發現法
四、學法指導
“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。
高二數學反思教案篇3
一、設計構思
1、設計理念
注重發展學生的創新意識。學生的數學學習活動不應只限于接受、記憶、模仿和練習,倡導學生積極主動探索、動手實踐與相互合作交流的數學學習方式。這種方式有助于發揮學生學習主動性,使學生的學習過程成為在教師引導下的“再創造”過程。我們應積極創設條件,讓學生體驗數學發現和創造的歷程,發展他們的創新意識。
注重提高學生數學思維能力。課堂教學是促進學生數學思維能力發展的主陣地。問題解決是培養學生思維能力的主要途徑。所設計的問題應有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等教學活動。內容的呈現應采用不同的表達方式,以滿足多樣化的學習需求。伴隨新的問題發現和問題解決后成功感的滿足,由此刺激學生非認知深層系統的良性運行,使其產生“樂學”的余味,學生學習的積極性與主動性在教學中便自發生成。本節主要安排應用類比法進行探討,加深學生對類比法的體會與應用。
注重學生多層次的發展。在問題解決的探究過程中應體現“以人為本”,充分體現“人人學有價值的數學,人人都能獲得必需的數學”,“不同的人在數學上得到不同的發展”的教學理念。有意義的數學學習必須建立在學生的主觀愿望和知識經驗基礎之上,而學生的基礎知識和學習能力是多層次的,所以設計的問題也應有層次性,使各層次學生都得到發展。
注重信息技術與數學課程的整合。高中數學課程應盡量使用科學型計算器,各種數學教育技術平臺,加強數學教學與信息技術的結合,鼓勵學生運用計算機、計算器等進行探索和發現。
另外,在數學教學中,強調數學本質的同時,也讓學生通過適度的形式化,較好的理解和使用數學概念、性質。
2、教材分析
冪函數是江蘇教育出版社普通高中課程標準實驗教科書數學(必修1)第二章第四節的內容。該教學內容在人教版試驗修訂本(必修)中已被刪去。標準將該內容重新提出,正是考慮到冪函數在實際生活的應用。故在教學過程及后繼學習過程中,應能夠讓學生體會其實際應用。《標準》將冪函數限定為五個具體函數,通過研究它們來了解冪函數的性質。其中,學生在初中已經學習了y=x、y=x2、y=x-1等三個簡單的冪函數,對它們的圖象和性質已經有了一定的感性認識。現在明確提出冪函數的概念,有助于學生形成完整的知識結構。學生已經了解了函數的基本概念、性質和圖象,研究了兩個特殊函數:指數函數和對數函數,對研究函數已經有了基本思路和方法。因此,教材安排學習冪函數,除內容本身外,掌握研究函數的一般思想方法是另一目的,另外應讓學生了解利用信息技術來探索函數圖象及性質是一個重要途徑。該內容安排一課時。
3、教學目標的確定
鑒于上述對教材的分析和新課程的理念確定如下教學目標:
⑴掌握冪函數的形式特征,掌握具體冪函數的圖象和性質。
⑵能應用冪函數的圖象和性質解決有關簡單問題。
⑶加深學生對研究函數性質的基本方法和流程的經驗。
⑷培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
⑸滲透辨證唯物主義觀點和方法論,培養學生運用具體問題具體分析的方法分析問題、解決問題的能力。
4、教學方法和教具的選擇
基于對課程理念的理解和對教材的分析,運用問題情境可以使學生較快的進入數學知識情景,使學生對數學知識結構作主動性的擴展,通過問題的導引,學生對數學問題探究,進行數學建構,并能運用數學知識解決問題,讓學生有運用數學成功的體驗。本課采用教師在學生原有的知識經驗和方法上,引導學生提出問題、解決問題的教學方法,體現以學生為主體,教師主導作用的教學思想。
教具:多媒體。制作多媒體課件以提高教學效率。
5、教學重點和難點
重點是從具體冪函數歸納認識冪函數的一些性質并作簡單應用。
難點是引導學生概括出冪函數性質。
6、教學流程
基于新課程理念在教學過程中的體現,教學流程的基線為:
考慮到學生已經學習了指數函數與對數函數,對函數的學習、研究有了一定的經驗和基本方法,所以教學流程又分兩條線,一條以內容為明線,另一條以研究函數的基本內容和方法為暗線,教學過程中同時展開。
明線:
暗線:
二、實施方案
問題導引師生活動設計意圖
問題情境⑴寫出下列y關于x的函數解析式:
①正方形邊長x、面積y
②正方體棱長x、體積y
③正方形面積x、邊長y
④某人騎車x秒內勻速前進了1km,騎車速度為y
⑤一物體位移y與位移時間x,速度1m/s
學生口答,教師板書答案。幻燈片演示問題。
由具體問題入手,從熟悉的情景引入,提高學生的參與程度。符合學生認識特點。
⑵上述函數解析式有什么共同特征?是否為指數函數?學生相互討論,必要時,教師將解析式寫成指數冪形式,以啟發學生歸納。投影演示定義。引導學生觀察,訓練學生歸納能力。并與前面知識進行區分,以進一步幫助學生明晰概念。
⑶判別下列函數中有幾個冪函數?
①y=②y=2x2③y=x④y=x2+x⑤y=-x3
學生獨立思考,回答。學生鑒別。幻燈片演示題目。
鞏固概念,強化學生對概念形式特征的把握。
⑷冪函數具有哪些性質?研究函數應該是哪些方面的內容。前面指數函數、對數函數研究了哪些內容?
學生討論,教師引導。學生回答。
引導學生回想前面學習指數函數與對數函數的研究內容和過程。啟發學生用類比思想進行研究冪函數。
⑸冪函數的定義域是否與對數函數、指數函數一樣,具有相同的定義域?學生小組討論,得到結論。引導學生舉例研究。結論:冪指數不同,定義域并不完全相同,應區別對待。
激發學生探討的欲望,提高學生主動參與程度。
⑹寫出下列函數的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x
學生解答,并歸納解決辦法。引導學生與指數函數、對數函數對照比較。(幻燈片演示)引導學生具體問題具體分析,并作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函數的奇偶性也應具體分析。
⑺上述函數的單調性如何?如何判斷?
學生思考:作圖引發學生作圖研究函數性質的興趣。函數單調性的判斷,既可以使用定義,也可以通過圖象解決,直觀,易理解。
⑻在同一坐標系內作出上述函數的圖象。學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示(附圖1)通過超級鏈接幾何畫板演示。訓練學生作圖的基本功,加強學生的實踐,讓學生在自己的經驗中認識冪函數的圖象。避免教師直接使用計算機演示圖象,剝奪學生動手的機會。
⑼上述函數圖象有哪些共同點?學生討論,總結。教師引導。可將學生已熟悉的函數y=,y=x一同投影,幫助學生觀察。(投影演示結論)
訓練學生觀察分析能力。
⑽回答第7個問題。
學生思考,回答。教師注意學生敘述的嚴密。訓練學生的語言敘述能力。再次體會與指數函數、對數函數性質的區別。體會冪指數的不同情況對函數單調性的影響。
⑾圖象之間有什么區別?特別是在分布上。與常數有什么聯系?
教師通過幾何畫板演示圖象在第一象限內的變化規律,以驗證學生猜想。通過超級鏈接幾何畫板演示。(附圖2)
這是較高要求,可以讓學生自由猜想和發言。進一步提高學生觀察,歸納能力。
⑿鞏固練習寫出下列函數的定義域,并指出它們的奇偶性和單調性:①y=x②y=x③y=x。
學生獨立思考并回答。
訓練學生自覺運用冪函數圖象性質的基本規律。
⒀簡單應用1:比較下列各組中兩個值的大小,并說明理由:
①0.75,0.76;
②(-0.95),(-0.96);
③0.23,0.24;
④0.31,0.31
學生思考,作答,教師引導學生敘述語言的邏輯性。
訓練學生用函數性質進行解釋,強化學生邏輯意識。其中第④小題是利用指數函數性質解決,注意區別。
⒁請學生考慮可以如何驗證上述答案的正確。
學生實踐。使用計算器驗證,提高學生使用學習工具的意識。
⒂簡單應用2:冪函數y=(m-3m-3)x在區間上是減函數,求m的值。
學生思考,作答。教師板演。對冪函數定義進一步鞏固,對函數性質作初步應用。同時訓練學生對初步答案進行篩選。
⒃簡單應用2:
已知(a+1)<(3-2a),試求a的取值范圍。
學生思考,作答。教師板演。
訓練學生靈活使用性質解題。
數學交流⒄小結:今天的學習內容和方法有哪些?你有哪些收獲和經驗?學生思考、小組討論,教師引導。讓學生回顧,小結,將對學生形成知識系統產生積極影響。
數學再現
⒅布置作業:
課本p.732、3、4、思考5思考5作為訓練學生應用數學于實際的較好例子,應讓能力較好學生得到充分發展。
幾點說明:
⑴本節課開始時要注意用相關熟悉例子引入新課。
⑵畫函數圖象時,如果學生已能夠運用計算器或相關計算機軟件作圖,可以讓學生自己操作,以提高學生探索問題的興趣和能力,并提高教學效率。
⑶由于課程標準對冪函數的研究范圍有相對限制,故第11個問題要求較高,建議視具體情況選擇教學。
⑷本設計相關課件采用PowerPoint演示文稿,其中部分使用超級鏈接至幾何畫板(4.06版本)進行演示。
高二數學反思教案篇4
一、教學目標
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點、難點
1.重點:理解分式有意義的條件.
2.難點:能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學生填寫P127[思考],學生自己依次填出:,,,.
2.學生看問題:一艘輪船在靜水中的最大航速為30/h,它沿江以最大航速順流航行90所用時間,與以最大航速逆流航行60所用時間相等,江水的流速為多少?
請同學們跟著教師一起設未知數,列方程.
設江水的流速為v/h.
輪船順流航行90所用的時間為小時,逆流航行60所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分數有什么相同點和不同點?
四、例題講解
P128例1.當下列分式中的字母為何值時,分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解
出字母的取值范圍.
[補充提問]如果題目為:當字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.
(補充)例2.當為何值時,分式的值為0?
(1)(2)(3)
[分析]分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案](1)=0(2)=2(3)=1
五、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當x取何值時,下列分式有意義?
(1)(2)(3)
3.當x為何值時,分式的值為0?
(1)(2)(3)
六、課后練習
1.下列代數式表示下列數量關系,并指出哪些是正是?哪些是分式?
(1)甲每小時做x個零件,則他8小時做零件個,做80個零件需小時.
(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是千米/時,輪船的逆流速度是千米/時.
(3)x與的差于4的商是.
2.當x取何值時,分式無意義?
3.當x為何值時,分式的值為0?
高二數學反思教案篇5
教學目標
1.使學生了解反函數的概念;
2.使學生會求一些簡單函數的反函數;
3.培養學生用辯證的觀點觀察、分析解決問題的能力。
教學重點
1.反函數的概念;
2.反函數的求法。
教學難點
反函數的概念。
教學方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數的定義、記法、習慣記法。(記作A);
第二張:本課時作業中的預習內容及提綱。
教學過程
1.講授新課
(檢查預習情況)
師:這節課我們來學習反函數(板書課題)§2.4.1反函數的概念。
同學們已經進行了預習,對反函數的概念有了初步的了解,誰來復述一下反函數的定義、記法、習慣記法?
生:(略)
(學生回答之后,打出幻燈片A)。
師:反函數的定義著重強調兩點:
(1)根據y=f(x)中x與y的關系,用y把x表示出來,得到x=φ(y);
(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應。
師:應該注意習慣記法是由記法改寫過來的。
師:由反函數的定義,同學們考慮一下,怎樣的映射確定的函數才有反函數呢?
生:一一映射確定的函數才有反函數。
(學生作答后,教師板書,若學生答不來,教師再予以必要的啟示)。
師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數值;后者y是自變量,x是函數值。)
在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數值,即x、y在兩式中所處的地位相同,但表示的`量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請同學們談一下,函數y=f(x)與它的反函數y=f–1(x)兩者之間,定義域、值域存在什么關系呢?
生:(學生作答,教師板書)函數的定義域,值域分別是它的反函數的值域、定義域。
師:從反函數的概念可知:函數y=f(x)與y=f–1(x)互為反函數。
從反函數的概念我們還可以知道,求函數的反函數的方法步驟為:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)將x=f–1(y)改寫成y=f–1(x),即對調x=f–1(y)中的x、y。
(3)指出反函數的定義域。
下面請同學自看例1
2.課堂練習課本P68練習1、2、3、4。
3.課時小結
本節課我們學習了反函數的概念,從中知道了怎樣的映射確定的函數才有反函數并求函數的反函數的方法步驟,大家要熟練掌握。
高二數學反思教案篇6
【教學目標】
1.使學生了解立體幾何研究的對象、內容:
2.使學生初步理解立體幾何中的主要數學思想方法(類比思想、轉化思想、展開思想)
3.培養學生空間想象能力,初步建立空間概念
【教學重點】
空間概念的建立與立體幾何中的主要數學思想方法
【教學難點】
空間概念的建立
【教學過程】
一.引入新課
1.請同學們用六根長度相等的火柴搭正三角形,試試看,最多達成幾個正三角形?學生動手試驗后,教師總結:在平面內最多只能搭成兩個,而在空間能搭成四個。同時,向學生展示正四面體骨架模型,再讓學生看圖1.
2.請同學們想一想,是否存在三條直線兩兩互相垂直?若存在請舉出實際中的例子。
學生討論后,教師總結:在同一平面內不存在,因為a⊥c,b⊥c,得到a∥b;但在空間是存在的,如教室墻角處的三條直線AB,AC,AD兩兩互相垂直(如圖2)。請同學們觀察正方體(向學生展示正方體模型)中一個頂點處的三條棱之間的關系,也是兩兩互相垂直的(如圖3)
3.小結:現實世界中許多問題,只在平面內研究是很不夠的,還需要在空間這個更廣闊的領域內來考慮,這就是我們將要學習的新課程--立體幾何(板書課題)二、講授新課
1.立體幾何的研究對象、內容
提問1:平面幾何的研究對象、內容是什么?答:對象是平面圖形,具體說是研究點、線、面;內容是平面圖形的畫法、形狀、位置關系、大小計算及應用。提問2:立體幾何的研究對象、內容又是什么?讓學生觀察正方體、圓柱、正四面體骨架等,引導學生與平面幾何進行類比。在學生回答的基礎上,教師小結為:立體幾何的研究對象--空間圖形(由空間的點、線、面組成)立體幾何的研究內容--空間圖形的畫法、形狀、位置關系、大小計算及應用,是平面幾何的推廣
2.空間圖形與平面圖形的畫法的不同點提問:同學們雖然還沒有掌握空間圖形的畫法,但已經見到了老師畫的正方體、圓柱、正四面體的直觀圖,同學們想一想,空間圖形與平面圖形的畫法有什么不同?經過分析,平面圖形的畫法是真實的,而空間圖形的直觀圖是不真實的,如正方體的底面本是正方形,但在直觀圖中都畫成平行四邊形。圓柱的底面本是圓,但在直觀圖中都畫成了橢圓。
例:1)說出下列各角的度數:∠B1A1C1、∠B1C1A1、∠BCB1的度數
2)計算∠BC1A1的大小
3)設AB=a,試求正方體的表面積和體積
分析:通過解答上述問題,同學們已經看到:在研究空間圖形時,不能依據對圖形的直覺作出判斷,而應依據正確的推理、計算作出結論。
三.立體幾何中的主要思想方法
1.類比思想
例1.判斷下列命題是否正確(a、b、c表示直線)
高二數學反思教案篇7
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二、教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學法
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
(一)創設情境(3分鐘)
“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題,
(二)猜想—推理—證明(15分鐘)
激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關系
注意:
1.強調將猜想轉化為定理,需要嚴格的`理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
高二數學反思教案篇8
教學準備
教學目標
1、知識與技能
(1)推廣角的概念、引入大于角和負角;(2)理解并掌握正角、負角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發學生學習興趣.(7)創設問題情景,激發學生分析、探求的學習態度,強化學生的參與意識.
2、過程與方法
通過創設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習.
3、情態與價值
通過本節的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分.角的概念推廣以后,知道角之間的關系.理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物.
教學重難點
重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法.
難點:終邊相同的角的表示.
教學工具
投影儀等.
教學過程
【創設情境】
思考:你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了1.25
小時,你應當如何將它校準?當時間校準以后,分針轉了多少度?
[取出一個鐘表,實際操作]我們發現,校正過程中分針需要正向或反向旋轉,有時轉不到一周,有時轉一周以上,這就是說角已不僅僅局限于之間,這正是我們這節課要研究的主要內容——任意角.
【探究新知】
1.初中時,我們已學習了角的概念,它是如何定義的呢?
[展示投影]角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所成的圖形.如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉到終止位置OB,就形成角a.旋轉開始時的射線叫做角的始邊,OB叫終邊,射線的端點o叫做叫a的頂點.
2.如上述情境中所說的校準時鐘問題以及在體操比賽中我們經常聽到這樣的術語:“轉體”(即轉體2周),“轉體”(即轉體3周)等,都是遇到大于的角以及按不同方向旋轉而成的角.同學們思考一下:能否再舉出幾個現實生活中“大于的角或按不同方向旋轉而成的角”的例子,這些說明了什么問題?又該如何區分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉時成不同的角,這些都說明了我們研究推廣角概念的必要性.為了區別起見,我們規定:按逆時針方向旋轉所形成的角叫正角(positiveangle),按順時針方向旋轉所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉,我們稱它形成了一個零角(zeroangle).
8.學習小結
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合.
五、評價設計
1.作業:習題1.1A組第1,2,3題.
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
進一步理解具有相同終邊的角的特點.
課后小結
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直
線上的角的集合.
課后習題
作業:
1、習題1.1A組第1,2,3題.
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
進一步理解具有相同終邊的角的特點.
板書
略