高三數(shù)學教案電子版
高三數(shù)學教案電子版篇1
一、教材分析
1、本節(jié)內(nèi)容在全書及章節(jié)的地位:《函數(shù)的單調(diào)性》是必修1第一章第 3 節(jié),
高中數(shù)學《函數(shù)的單調(diào)性》說課稿教案模板
是高考的重點考查內(nèi)容之一,是函數(shù)的一個重要性質(zhì),在比較幾個數(shù)的大小、求函數(shù)值域、對函數(shù)的定性分析以及與其他知識的綜合上都有廣泛的應用。通過對這一節(jié)課的學習,可以讓學生加深對函數(shù)的本質(zhì)認識。也為今后研究具體函數(shù)的性質(zhì)作了充分準備,起到承上啟下的作用。
2、教學目標:根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學生已有的認知水平我制定如下教學目標:
基礎(chǔ)知識目標:了解能用文字語言和符號語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;明確掌握利用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與步驟;并能用定義證明某些簡單函數(shù)的單調(diào)性;
能力訓練目標:培養(yǎng)學生嚴密的.邏輯思維能力、用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,
情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。
重點:形成增(減)函數(shù)的形式化定義。
難點。形成增減函數(shù)概念的過程中,如何從圖像升降的直觀認識過渡到函數(shù)增減數(shù)學符號語言表述;用定義證明函數(shù)的單調(diào)性。
為了講清重點、難點,使學生能達到本節(jié)設(shè)定的教學目標,我再從教法和學法上談談:
二、 教法
在教學中我使用啟發(fā)式教學,在教師的引導下,創(chuàng)設(shè)情景,通過開放性問題的設(shè)置來啟發(fā)學生思考,在思考中體會數(shù)學概念形成過程中所蘊涵的數(shù)學方法,
三、學法
倡導學生主動參與、樂于探究、勤于動手,培養(yǎng)學生搜集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力”。數(shù)學作為基礎(chǔ)教育的核心課程之一,轉(zhuǎn)變學生數(shù)學學習方式,不僅有利于提高學生的數(shù)學素養(yǎng),而且有利于促進學生整體學習方式的轉(zhuǎn)變。我以建構(gòu)主義理論為指導,輔以多媒體手段,采用著重于學生探索研究的啟發(fā)式教學方法,結(jié)合師生共同討論、歸納。在課堂結(jié)構(gòu)上,我根據(jù)學生的認知水平,我設(shè)計了 ①創(chuàng)設(shè)情境——引入概念②觀察歸納——形成概念③討論研究——深化概念④即時訓練—鞏固新知⑤總結(jié)反思——提高認識⑥任務后延——自主探究六個層次的學法,
它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。接下來,我再具體談一談這堂課的教學過程:
四、 教學程序及設(shè)想
(一) 創(chuàng)設(shè)情境——引入概念
通過設(shè)置問題情景、課堂導入、新課講授及終結(jié)階段的教學中,我力求培養(yǎng)學生的自主學習的能力,以點撥、啟發(fā)、引導為教師職責。
1、由具體的數(shù)列實例引入:
觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應函數(shù)的哪些變化規(guī)律:隨x的增大,y的值有什么變化。
高三數(shù)學教案電子版篇2
尊敬的各位教師,大家好,我是()場的()號考生。
今日,我說課的資料是()
對于本節(jié)課,我將從教什么、怎樣教、為什么這么教來闡述本次說課。
一、說教材
教材是連接教師和學生的紐帶,在整個教學過程中起著至關(guān)重要的作用,所以,先談談我對教材的理解。
正弦函數(shù)的性質(zhì)是選自北師大版高中數(shù)學必修四第一章三角函數(shù)第五節(jié)正弦函數(shù)的性質(zhì)與圖象5.3正弦函數(shù)的性質(zhì)的資料,主要資料便是正弦函數(shù)的性質(zhì),教材經(jīng)過作圖、觀察、誘導公式等方法得出正弦函數(shù)y=sinx的性質(zhì)。并且教材突出了正弦函數(shù)圖象的重要性,能夠幫忙學生更深刻的認識、理解、記憶正弦函數(shù)的性質(zhì)。
二、說學情
合理把握學情是上好一堂課的基礎(chǔ),本次課所應對的學生群體具有以下特點。
高中的學生掌握了必須的基礎(chǔ)知識,思維較敏捷,動手本事較強,但理解本事、自主學習本事較缺乏?;诖?,本節(jié)課注重引導學生動腦思考,更富有啟發(fā)性。并且學生的自尊心較強,所以對學生的評價注重先揚后抑,鼓勵學生多多發(fā)言,還能夠?qū)W生進行正確引導。
三、說教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維目標:
(一)知識與技能
會用正弦函數(shù)圖象研究和理解正弦函數(shù)的性質(zhì),能熟練運用正弦函數(shù)的性質(zhì)解決問題。
(二)過程與方法
經(jīng)過正弦函數(shù)的圖象,探索正弦函數(shù)的性質(zhì),提升邏輯思考、歸納總結(jié)的本事。
(三)情感態(tài)度價值觀
經(jīng)過本節(jié)的學習體驗數(shù)學的嚴謹性,養(yǎng)成細心觀察、認真分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神。
四、說教學重難點
本著新課程標準,吃透教材,了解學生特點的基礎(chǔ)上我確定了以下重難點
(一)教學重點
由正弦函數(shù)的圖象得到正弦函數(shù)的性質(zhì)。
(二)教學難點
正弦函數(shù)的周期性和單調(diào)性。
五、說教法和學法
此刻的文盲不是不懂字的人,而是沒有掌握學習方法的人。因而在本節(jié)課我將采用講授法、探究法、練習法等教學方法,我在教學過程中異常重視對學生的引導,讓學生從機械的學答中向?qū)W問轉(zhuǎn)變,從學會到會學,成為真正學習的主人。
高三數(shù)學教案電子版篇3
教學目標
掌握等差數(shù)列與等比數(shù)列的性質(zhì),并能靈活應用等差(比)數(shù)列的性質(zhì)解決有關(guān)等差(比)數(shù)列的綜合性問題.
教學重難點
掌握等差數(shù)列與等比數(shù)列的性質(zhì),并能靈活應用等差(比)數(shù)列的性質(zhì)解決有關(guān)等差(比)數(shù)列的綜合性問題.
教學過程
【示范舉例】
例1:數(shù)列是首項為23,公差為整數(shù),
且前6項為正,從第7項開始為負的等差數(shù)列
(1)求此數(shù)列的公差d;
(2)設(shè)前n項和為Sn,求Sn的值;
(3)當Sn為正數(shù)時,求n的值.
高三數(shù)學教案電子版篇4
1、理解復數(shù)的基本概念、復數(shù)相等的充要條件。
2、了解復數(shù)的代數(shù)表示法及其幾何意義。
3、會進行復數(shù)代數(shù)形式的四則運算。了解復數(shù)的代數(shù)形式的加、減運算及其運算的幾何意義。
4、了解從自然數(shù)系到復數(shù)系的關(guān)系及擴充的基本思想,體會理性思維在數(shù)系擴充中的作用。本章重點:1。復數(shù)的有關(guān)概念;2。復數(shù)代數(shù)形式的四則運算。
本章難點:運用復數(shù)的有關(guān)概念解題。近幾年高考對復數(shù)的考查無論是試題的難度,還是試題在試卷中所占比例都是呈下降趨勢,常以選擇題、填空題形式出現(xiàn),多為容易題。在復習過程中,應將復數(shù)的概念及運算放在首位。
知識網(wǎng)絡(luò)
復數(shù)的概念及其運算
典例精析
題型一復數(shù)的概念
【例1】(1)如果復數(shù)(m2+i)(1+mi)是實數(shù),則實數(shù)m=;
(2)在復平面內(nèi),復數(shù)1+ii對應的點位于第象限;
(3)復數(shù)z=3i+1的共軛復數(shù)為z=。
【解析】(1)(m2+i)(1+mi)=m2—m+(1+m3)i是實數(shù)1+m3=0m=—1。
(2)因為1+ii=i(1+i)i2=1—i,所以在復平面內(nèi)對應的點為(1,—1),位于第四象限。
(3)因為z=1+3i,所以z=1—3i。
【點撥】運算此類題目需注意復數(shù)的代數(shù)形式z=a+bi(a,bR),并注意復數(shù)分為實數(shù)、虛數(shù)、純虛數(shù),復數(shù)的幾何意義,共軛復數(shù)等概念。
【變式訓練1】(1)如果z=1—ai1+ai為純虛數(shù),則實數(shù)a等于()
A、0B、—1C、1D、—1或1
(2)在復平面內(nèi),復數(shù)z=1—ii(i是虛數(shù)單位)對應的點位于()
A、第一象限B。第二象限C。第三象限D(zhuǎn)。第四象限
【解析】(1)設(shè)z=xi,x0,則
xi=1—ai1+ai1+ax—(a+x)i=0或故選D。
(2)z=1—ii=(1—i)(—i)=—1—i,該復數(shù)對應的點位于第三象限。故選C。
題型二復數(shù)的相等
【例2】(1)已知復數(shù)z0=3+2i,復數(shù)z滿足zz0=3z+z0,則復數(shù)z=;
(2)已知m1+i=1—ni,其中m,n是實數(shù),i是虛數(shù)單位,則m+ni=;
(3)已知關(guān)于x的方程x2+(k+2i)x+2+ki=0有實根,則這個實根為,實數(shù)k的值為。
【解析】(1)設(shè)z=x+yi(x,yR),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2—2x)i=0,
則由復數(shù)相等的條件得
解得所以z=1—。
(2)由已知得m=(1—ni)(1+i)=(1+n)+(1—n)i。
則由復數(shù)相等的條件得
所以m+ni=2+i。
(3)設(shè)x=x0是方程的實根,代入方程并整理得
由復數(shù)相等的充要條件得
解得或
所以方程的實根為x=2或x=—2,
相應的k值為k=—22或k=22。
【點撥】復數(shù)相等須先化為z=a+bi(a,bR)的形式,再由相等得實部與實部相等、虛部與虛部相等。
【變式訓練2】(1)設(shè)i是虛數(shù)單位,若1+2i1+i=a+bi(a,bR),則a+b的值是()
A、—12B、—2C、2D、12
(2)若(a—2i)i=b+i,其中a,bR,i為虛數(shù)單位,則a+b=。
【解析】(1)C。1+2i1+i=(1+2i)(1—i)(1+i)(1—i)=3+i2,于是a+b=32+12=2。
(2)3、2+ai=b+ia=1,b=2。
題型三復數(shù)的運算
【例3】(1)若復數(shù)z=—12+32i,則1+z+z2+z3++z2008=;
(2)設(shè)復數(shù)z滿足z+z=2+i,那么z=。
【解析】(1)由已知得z2=—12—32i,z3=1,z4=—12+32i=z。
所以zn具有周期性,在一個周期內(nèi)的和為0,且周期為3。
所以1+z+z2+z3++z2008
=1+z+(z2+z3+z4)++(z2006+z2007+z2008)
=1+z=12+32i。
(2)設(shè)z=x+yi(x,yR),則x+yi+x2+y2=2+i,
所以解得所以z=+i。
【點撥】解(1)時要注意x3=1(x—1)(x2+x+1)=0的三個根為1,,—,
其中=—12+32i,—=—12—32i,則
1++2=0,1+—+—2=0,3=1,—3=1,—=1,2=—,—2=。
解(2)時要注意zR,所以須令z=x+yi。
【變式訓練3】(1)復數(shù)11+i+i2等于()
A、1+i2B、1—i2C、—12D、12
(2)(20_江西鷹潭)已知復數(shù)z=23—i1+23i+(21—i)2010,則復數(shù)z等于()
A、0B、2C、—2iD、2i
【解析】(1)D。計算容易有11+i+i2=12。
(2)A。
總結(jié)提高
復數(shù)的代數(shù)運算是重點,是每年必考內(nèi)容之一,復數(shù)代數(shù)形式的運算:①加減法按合并同類項法則進行;②乘法展開、除法須分母實數(shù)化。因此,一些復數(shù)問題只需設(shè)z=a+bi(a,bR)代入原式后,就可以將復數(shù)問題化歸為實數(shù)問題來解決。
高三數(shù)學教案電子版篇5
大家好!
我是__數(shù)學教師__,我今天說課的題目是:人教A版普通高中課程標準實驗教科書數(shù)學必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標準對教材的要求,結(jié)合我對教材的理解,我將從以下幾個方面說明我的設(shè)計和構(gòu)思。
一、教材分析
“解三角形”既是高中數(shù)學的基本內(nèi)容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學習,讓學生從“實際問題”抽象成“數(shù)學問題”的建模過程中,體驗“觀察——猜想——證明——應用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學的力量,進一步培養(yǎng)學生對數(shù)學的學習興趣和“用數(shù)學”的意識。
二、學情分析
我所任教的學校是我縣一所農(nóng)村普通中學,大多數(shù)學生基礎(chǔ)薄弱,對“一些重要的數(shù)學思想和數(shù)學方法”的應用意識和技能還不高。但是,大多數(shù)學生對數(shù)學的興趣較高,比較喜歡數(shù)學,尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學生能夠積極配合,有比較不錯的表現(xiàn)。
三、教學目標
1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求解決方案,從而引發(fā)學生對現(xiàn)實世界的一些數(shù)學模型進行思考。
情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數(shù)學規(guī)律的數(shù)學思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數(shù)學學習興趣和主動性,鍛煉探究精神。樹立“數(shù)學與我有關(guān),數(shù)學是有用的,我要用數(shù)學,我能用數(shù)學”的理念。
2、教學重點、難點
教學重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段
為了更好的達成上面的教學目標,促進學習方式的轉(zhuǎn)變,本節(jié)課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結(jié)合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。
高三數(shù)學教案電子版篇6
教學目標
1.理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并能運用通項公式解決簡單的問題.
(1)了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列,了解等差中項的概念;
(2)正確認識使用等差數(shù)列的各種表示法,能靈活運用通項公式求等差數(shù)列的首項、公差、項數(shù)、指定的項;
(3)能通過通項公式與圖像認識等差數(shù)列的性質(zhì),能用圖像與通項公式的關(guān)系解決某些問題.
2.通過等差數(shù)列的圖像的應用,進一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過等差數(shù)列通項公式的運用,滲透方程思想.
3.通過等差數(shù)列概念的歸納概括,培養(yǎng)學生的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識;通過對等差數(shù)列的研究,使學生明確等差數(shù)列與一般數(shù)列的內(nèi)在聯(lián)系,從而滲透特殊與一般的辯證唯物主義觀點.
關(guān)于等差數(shù)列的教學建議
(1)知識結(jié)構(gòu)
(2)重點、難點分析
①教學重點是等差數(shù)列的定義和對通項公式的認識與應用,等差數(shù)列是特殊的數(shù)列,定義恰恰是其特殊性、也是本質(zhì)屬性的準確反映和高度概括,準確把握定義是正確認識等差數(shù)列,解決相關(guān)問題的前提條件.通項公式是項與項數(shù)的函數(shù)關(guān)系,是研究一個數(shù)列的重要工具,等差數(shù)列的通項公式的結(jié)構(gòu)與一次函數(shù)的解析式密切相關(guān),通過函數(shù)圖象研究數(shù)列性質(zhì)成為可能.
②通過不完全歸納法得出等差數(shù)列的通項公式,所以是教學中的一個難點;另外,出現(xiàn)在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點.
(3)教法建議
①本節(jié)內(nèi)容分為兩課時,一節(jié)為等差數(shù)列的定義與表示法,一節(jié)為等差數(shù)列通項公式的應用.
②等差數(shù)列定義的引出可先給出幾組等差數(shù)列,讓學生觀察、比較,概括共同規(guī)律,再由學生嘗試說出等差數(shù)列的定義,對程度差的學生可以提示定義的結(jié)構(gòu):“……的數(shù)列叫做等差數(shù)列”,由學生把限定條件一一列舉出來,為等比數(shù)列的定義作準備.如果學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是等差數(shù)列的數(shù)列作為反例,再由學生修改其定義,逐步完善定義.
③等差數(shù)列的定義歸納出來后,由學生舉一些等差數(shù)列的例子,以此讓學生思考確定一個等差數(shù)列的條件.
④由學生根據(jù)一般數(shù)列的表示法嘗試表示等差數(shù)列,前提條件是已知數(shù)列的首項與公差.明確指出其圖像是一條直線上的一些點,根據(jù)圖像觀察項隨項數(shù)的變化規(guī)律;再看通項公式,項可看作項數(shù)的一次型()函數(shù),這與其圖像的形狀相對應.
⑤有窮等差數(shù)列的末項與通項是有區(qū)別的,數(shù)列的通項公式是數(shù)列第項與項數(shù)之間的函數(shù)關(guān)系式,有窮等差數(shù)列的項數(shù)未必是,即其末項未必是該數(shù)列的第項,在教學中一定要強調(diào)這一點.
⑥等差數(shù)列前項和的公式推導離不開等差數(shù)列的性質(zhì),所以在本節(jié)課應補充一些重要的性質(zhì);另外可讓學生研究等差數(shù)列的子數(shù)列,有規(guī)律的子數(shù)列會引起學生的興趣.
⑦等差數(shù)列是現(xiàn)實生活中廣泛存在的數(shù)列的數(shù)學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關(guān)問題,自己嘗試解決,為學生提供相互學習的機會,創(chuàng)設(shè)相互研討的課堂環(huán)境.