欧美一级高清在线观看,亚洲第一福利视频,高清在线一区二区,国产成人精品第一区二区

寫方案網 > 教學教案 > 數學教案 >

高三數學教案設計

時間: 新華 數學教案

高三數學教案設計篇1

一、教學目標

知識與技能:

理解任意角的概念(包括正角、負角、零角)與區間角的概念。

過程與方法:

會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區間角的集合的書寫。

情感態度與價值觀:

1、提高學生的推理能力;

2、培養學生應用意識。

二、教學重點、難點:

教學重點:

任意角概念的理解;區間角的集合的書寫。

教學難點:

終邊相同角的集合的表示;區間角的集合的書寫。

三、教學過程

(一)導入新課

回顧角的定義

①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。

②角的第二種定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。

(二)教學新課

1、角的有關概念:

①角的定義:

角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形。

②角的名稱:

注意:

⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;

⑵零角的終邊與始邊重合,如果α是零角α=0°;

⑶角的概念經過推廣后,已包括正角、負角和零角。

請說出角α、β、γ各是多少度?

2、象限角的概念:

定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

高三數學教案設計篇2

一、指導思想

今年是我省使用新教材的第八年,即進入了新課程標準下高考的第六年。高三數學教學要以《數學課程標準》為依據,全面貫徹教育方針,積極實施素質教育。 提高學生的學習能力仍是我們的奮斗目標。近年來的高考數學試題逐步做到科學化、規范化,堅持了穩中求改、穩中創新的原則。 高考試題不但堅持了考查全面,比例適當,布局合理的特點,也突出體現了變知識立意為能力立意這一舉措。更加注重考查考生進入高校學習所需的基本素 養,這些問題應引起我們在教學中的關注和重視。

二、 注意事項

1、 高度重視基礎知識,基本技能和基本方法的復習。

“基礎知識,基本技能和基本方法”是高考復習的重點。我們希望在復習課中 要認真落實“基礎練習”,并注意蘊涵在基礎知識中的能力因素,注意基本問題中的能力培養。特別是要學會把基礎知識放在新情景中去分析,應用。

2、 高中的‘重點知識’在復習中要保持較大的比重和必要的深度。

原來的重點內容函數、不等式、數列、向量、立體幾何,平面三角及解析幾何 中的綜合問題等。在教學中,要避免重復及簡單的操練。新增的內容:算法、概率等內容在復習時也應引起我們的足夠重視。總之高三的數學復習課要以培養邏輯思維 能力為核心,加強運算能力為主體進行復習。

3、 重視‘通性、通法’的落實。

要把復習的重點放在教材中典型例題、習題上;放在體現通性、通法的例題、 習題上;放在各部分知識網絡之間的內在聯系上抓好課堂教學質量,定出實施方法和評價方案。

4、 認真學習《__省2015年高考考試說明》,研究近三年的高考試題,提高復習課的效率。

《考試說明》是命題的依據,復習的依據。 高考試題是《考試說明》的具體體現。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認識《考試說明》上的差距。 并力求在二輪復習中縮小這一差距,更好地指導我們的復習。

5、 滲透數學思想方法,培養數學學科能力。

《考試說明》明確指出要考查數學思想方法, 要加強學科能力的考查。我們在復習中要加強數學思想方法的復習,如轉化與化歸的思想、函數與方程的思想、分類討論的思想、數形結合的思想。 以及配方法、換元法、待定系數法、反證法、數學歸納法、解析法等數學基本方法都要有意識地根據學生學習實際予以復習及落實。

6、 二輪復習課中注意新的目標定位。

① 培養學生搜集和處理信息的能力;

② 激發學生的創新精神;

③ 培養學生在學習過程中的的合作精神;

④ 激活顯示各科知識的儲存,嘗試相關知識的靈活應用及綜合應用。

三、知識和能力要求

1、知識要求 對知識的要求由低到高分為三個層次,依次是知道和感知、理解和掌握、靈活和綜合運用,且高一級的層次要求包括低一級的層次要求。

(1)感知和了解:要求對所學知識的含義有初步的了解和感性的認識或初步的 理解,知道這一知識內容是什么,并能在有關的問題中識別、模仿、描述它。

(2)理解和掌握:要求對所學知識內容有較為深刻的理論認識,能夠準確地刻 畫或解釋、舉例說明、簡單的變形、推導或證明、抽象歸納,并能利用相關知識解決有關問題。

(3)靈活和綜合運用:要求系統地掌握知識的內在聯系,能靈活運用所學知識 分析和解決較為復雜的或綜合性的數學現象與數學問題。

2、能力要求

能力主要指運算求解能力、數據處理能力、空間想象能力、抽象概括能力、推 理論證能力以及實踐能力和創新意識。

(1)運算求解能力:會根據法則、公式進行正確運算、變形;能根據問題的條件, 尋找與設計合理、簡捷運算途徑。

(2)數據處理能力:會收集、整理、分析數據,能抽取對研究問題有用的信息, 并作出正確的判斷;能根據要求對數據進行估計和近似計算。

(3)空間想象能力:會畫簡單的幾何圖形;能準確地分析圖形中有關量的相互關 系;會運用圖形與圖表等手段形象地揭示問題的本質。

(4)抽象概括能力:能從具體、生動的實例中,發現研究對象的本質;能從給定 的大量信息材料中,概括出一些結論,并能應用于解決問題或作出新的判斷。

(5)推理論證能力:會根據已知的事實和已獲得的正確數學命題來論證某一數學 命題真實性。

(6)應用意識和實踐能力:能夠對問題所提供的信息資料進行歸納、整理和分類, 將實際問題抽象為數學問題,建立數學模型;能應用相關的數學方法解決問題。

(7)創新意識和能力:能夠獨立思考,靈活和綜合地運用所學數學的知識、思想 和方法,提出問題、分析問題和解決問題。

四、學生情況分析:

1 基礎知識掌握情況分析:高三一部11、12班大部分學生基礎知識掌握情況較差,計算能力不強,一些基 本的題型都不能自如的解決。通過一段的一輪復習,大部分學生對復習過的公式,定理、法則都有了一定的認識與理解。基本能夠記住該記公式,但對于沒有復習的 部分,還是有一定的欠缺。表現為一些基本的公式、法則、定理等都忘掉了。

2 學習態度情況分析:有相當一部分同學學習態度極為不端正,主要表現為:

(1)缺乏上進心,有相當一部分同學信心不足,沒有必勝的勇氣和信心。

(2)不能按時完成作業,有抄襲或只是解決一些簡單的問題而缺乏深入研究難題的 習慣。

(3)缺乏自主復習的習慣,大部分同學只是在等老師引導進行一輪復習,而不能夠 自己動手搞好提前復習,表現在考試(或作業)中遇到了沒有復習的試題時,顯得毫無辦法。

(4)缺乏動手能力及動手習慣,對復習過的知識不能及時的進行鞏固、練習,所發 的講義、練習卷等不能夠及時、認真填寫,導致對復習過的知識掌握的熟練程度不夠。

3 復習方式、方法分析:

(1)缺少科學有效的復習方法,有相當一部分同學沒有改錯本,在一些愛錯的地方 不斷的犯錯。不能夠做到“吃一塹、長一智”。

(2)一些同學不會聽課,不會記筆記。上課時,整堂忙于記筆記,而忽視聽講,不 注意聽思路的分析及探索過程。

(3)不注意歸納知識,復習到的只是一些零散的知識,而不是有效的知識、方法體 系,顯得很笨。

(4)不注意經常回顧,對復習過的知識置之千里,而不去經常鞏固、練習。時間長 了,又“生銹”了。

五、復習對策教學措施

1、盡快幫助學生樹立信心!

2、教給學生科學的復習習慣和復習方法。

3、堅持基礎知識訓練。

4、對高考要考察的六類解答問題,一定要認真做好專題復習和訓練; 每周訓練兩套模擬試題;每天做好專題訓練的配套作業。

六、教學參考進度

1、 2月10日至4月20日為第二輪復習階段。這一輪的復習方式是綜合訓練與專題總結并舉,在每周兩次綜合練習的基礎上穿插專題總結;

2、 4月21日至5月20日為第三輪復習階段。這一階段主要以綜合訓練為主。每 周至少做三套綜合練習題,題目來源為山東省各地市的一、二輪模擬題。

3、 5月21日至6月7日為回扣課本階段。這一階段主要根據第三輪綜合練習中的問題回顧課本,以達到進一步落實升華的目的。

七、二輪復習資料編寫專題內容及分工安排

(一)專題分工 專題一:集合與簡單邏輯用語------鄧光珍專題二:《函數與導數》---張福平專題三:《三角函數及解三角形》----王富香專題四:《數列》----姜守芹 專題五:《立體幾何》----高吉泉專題六:《解析幾何(穿插向量)》----趙來偉專題七:《概率與統計》----梁建國專題八:《導數與積分》----梁建國 專題九:《思想方法與選擇、填空題的解法》---高吉泉

(二)編寫專題的基本要求:

1、專題以高考命題趨勢、考點透視、知識框架題目、例題、專項訓練的形式出 現,要精選題目,要有一定的綜合性,難度要達到高考的要求,不能降低要求。

2、每個專題約4 天時間完成(包括過關測試),采用講練結合,以練為主。

3、各專題的題量要根據本專題的地位及難易程度,既要有小題,也要有大題。

4、每個專題在復習過程中要讓學生理清本專題的常考考點、高考地位,高考分 值、主要題型、高考熱點、重點等。在第二輪復習的強化訓練中,根據學生的實際情況,以強化訓練為主。

在強化訓 練中,命題一定要針對學生的實際情況,有針對性地命題,難度要適易,尤其中低檔強化訓練題為主,不要過于拔高要求,各層次的訓練都要狠抓基礎,針對高考的 方向,切實做到通過強化訓練,使學生的數學成績能得到穩步提高。在強化訓練的試卷講評中,要提前探討和思考,讓學生有回顧的余地,切忌發下試卷就講評,且 要有針對性的講解,老師備課一定要備學生,盡可能一節課的時間講評完試卷,每次的訓練中要總結得與失,出現的問題要及時得到解決,問題較多的還要多次重復 考及多次訓練。

八、本學期備課內容及進度: 周次、內容、目的、要求重點、考點熱點

1 市第二次統考試卷講評

2 專題一集合與簡單邏輯用語知識框架、雙基集合運算和充分必要條件

3 專題二函數與導數知識框架、雙基函數不等式綜合應用

4 第三專題角函數及解三角形知識網絡、雙基數列綜合應用

5 第四專題數列函數創新探究函數創新綜合

6 專題五立體幾何回扣雙基、知識框架立體幾何綜合應用

7 專題六解析幾何知識框架、回扣雙基解析幾何綜合應用

8 市三次統考試卷講評

9 第七專題概率與統計知識框架、雙基概率統計綜合

10 第八專題導數應用和積分雙基、知識要點導數綜合應用

11 第九專題思想方法和選、填題解法回扣基本方法和思想數形結合、分類討論、化歸轉化、函數與方程

12 市四次統考試卷講評

13 考前模擬訓練綜合訓練、應試能力和技巧重點、熱點講評

14 回扣課本、反饋雙基查缺補漏,回歸課本

15 回扣課本、反饋雙基回歸課本,考試方法

16 高考

高三數學教案設計篇3

一、教學目標

1、知識與技能

(1)理解對數的概念,了解對數與指數的關系;

(2)能夠進行指數式與對數式的互化;

(3)理解對數的性質,掌握以上知識并培養類比、分析、歸納能力;

2、過程與方法

3、情感態度與價值觀

(1)通過本節的學習體驗數學的嚴謹性,培養細心觀察、認真分析

分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神;

(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;

(3)體驗數學的科學功能、符號功能和工具功能,培養直覺觀察、

探索發現、科學論證的良好的數學思維品質、

二、教學重點、難點

教學重點

(1)對數的&39;定義;

(2)指數式與對數式的互化;

教學難點

(1)對數概念的理解;

(2)對數性質的理解;

三、教學過程:

四、歸納總結:

1、對數的概念

一般地,如果函數ax=n(a0且a≠1)那么數x叫做以a為底n的對數,記作x=logan,其中a叫做對數的底數,n叫做真數。

2、對數與指數的互化

ab=n?logan=b

3、對數的基本性質

負數和零沒有對數;loga1=0;logaa=1對數恒等式:alogan=n;logaa=nn

五、課后作業

課后練習1、2、3、4

高三數學教案設計篇4

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數并運用這個公式去解決有關排列數的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、復習引入

上節課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據加法原理,得到不同的取法種數是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據乘法原理,得到不同的取法種數是:50×40=2000.

第2題說,共有A,B,C三個優良品種,而每個品種在甲類型土地上實驗有三個小區,在乙類型的土地上有三個小區……所以共需3×5=15個實驗小區.

二、講授新課

學習了兩個基本原理之后,現在我們繼續學習排列問題,這是我們本節討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上海或廣州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯系,即利用不同顏色的旗子發送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數,也就是紅、黃、綠這三面旗子的所有不同順序的排法總數.

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數是:3×2×1=6(種).

根據學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數字1,2,3,4可以組成多少個沒有重復數字的三位數?寫出這些所有的三位數.

根據乘法原理,從四個不同的數字中,每次取出三個排成三位數的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數字.在1,2,3,4這四個數字中任取一個,有4種取法.

第二步,確定十位上的數字.當百位上的數字確定以后,十位上的數字只能從余下的三個數字去取,有3種方法.

第三步,確定個位上的數字.當百位、十位上的數字都確定以后,個位上的數字只能從余下的兩個數字中去取,有2種方法.

根據乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行.我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上海—廣州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數?

生:“一個排列”不應當是一個數,而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數,不用把所有情況羅列出來,才是一個數.前面提到的第三個問題,實質上也是這樣的.

三、課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業

課本:P232練習1,2,3,4,5,6,7.

高三數學教案設計篇5

一、教學過程

1.復習。

反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。

求出函數y=x3的反函數。

2.新課。

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學生中選定&39;

生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家幫他找找原因。

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的.關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?

(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y=的圖象?

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。

師:將橫坐標與縱坐標互換?怎么換?

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

(學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)

生6:我發現這兩個圖象應是關于某條直線對稱。

師:能說說是關于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。

師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。

(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)

還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。

最后教師與學生一起總結:

點(x,y)與點(y,x)關于直線y=x對稱;

函數及其反函數的圖象關于直線y=x對稱。

二、反思與點評

1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節課教學中,我有意選擇了幾何畫板4。0進行教學。

2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

在本節課的教學中,計算機更多的是作為學生探索發現的工具,學生不但發現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。

當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發展數學創新能力。

3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高三數學教案設計篇6

教學目的:

(1)使學生初步理解集合的概念,知道常用數集的概念及記法

(2)使學生初步了解“屬于”關系的意義

(3)使學生初步了解有限集、無限集、空集的意義

教學重點:集合的基本概念及表示方法

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示

一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內容分析:

集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎

把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯

本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節課主要學習全章的引言和集合的基本概念學習引言是引發學生的學習興趣,使學生認識學習本章的意義本節課的教學重點是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學過程:

一、復習引入:

1.簡介數集的發展,復習公約數和最小公倍數,質數與和數;

2.教材中的章頭引言;

3.集合論的創始人——康托爾(德國數學家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

集合的有關概念:

由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

定義:一般地,某些指定的對象集在一起就成為一個集合.

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數集及記法

(1)非負整數集(自然數集):全體非負整數的集合記作N,

(2)正整數集:非負整數集內排除0的集記作N或N+

(3)整數集:全體整數的集合記作Z,

(4)有理數集:全體有理數的集合記作Q,

(5)實數集:全體實數的集合記作R

注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

(2)非負整數集內排除0的集記作N或N+Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z

高三數學教案設計篇7

一次函數的的教案

一、教學目標

1、理解一次函數和正比例函數的概念,以及它們之間的關系。

2、能根據所給條件寫出簡單的一次函數表達式。

二、能力目標

1、經歷一般規律的探索過程、發展學生的抽象思維能力。

2、通過由已知信息寫一次函數表達式的過程,發展學生的數學應用能力。

三、情感目標

1、通過函數與變量之間的關系的聯系,一次函數與一次方程的聯系,發展學生的數學思維。

2、經歷利用一次函數解決實際問題的過程,發展學生的數學應用能力。

四、教學重難點

1、一次函數、正比例函數的概念及關系。

2、會根據已知信息寫出一次函數的表達式。

五、教學過程

1、新課導入   有關函數問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的'增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,請看:   某彈簧的自然長度為 3厘米,在彈性限度內,所掛物體的質量x每增加 1千克、彈簧長度y增加 0.5厘米。

(1)計算所掛物體的質量分別為 1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,

(2)你能寫出x與y之間的關系式嗎?   分析:當不掛物體時,彈簧長度為 3厘米,當掛 1千克物體時,增加 0.5厘米,總長度為 3.5厘米,當增加 1千克物體,即所掛物體為 2千克時,彈簧又增加 0.5厘米,總共增加 1厘米,由此可見,所掛物體每增加 1千克,彈簧就伸長 0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

2、做一做   某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關系嗎?(y=1000.18x或y=100 x)   接著看下面這些函數,你能說出這些函數有什么共同的特點嗎?上面的幾個函數關系式,都是左邊是因變量,右邊是含自變量的代數式,并且自變量和因變量的指數都是一次。

3、一次函數,正比例函數的概念   若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。

4、例題講解   例1:下列函數中,y是x的一次函數的是( )   ①y=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④   分析:這道題考查的是一次函數的概念,特別要強調一次函數自變量與因變量的指數都是1,因而②不是一次函數,答案為B

高三數學教案設計篇8

教學目標

1.理解等差數列的概念,掌握等差數列的通項公式,并能運用通項公式解決簡單的問題.

(1)了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判斷一個數列是等差數列,了解等差中項的概念;

(2)正確認識使用等差數列的各種表示法,能靈活運用通項公式求等差數列的首項、公差、項數、指定的項;

(3)能通過通項公式與圖像認識等差數列的性質,能用圖像與通項公式的關系解決某些問題.

2.通過等差數列的圖像的應用,進一步滲透數形結合思想、函數思想;通過等差數列通項公式的運用,滲透方程思想.

3.通過等差數列概念的歸納概括,培養學生的觀察、分析資料的能力,積極思維,追求新知的創新意識;通過對等差數列的研究,使學生明確等差數列與一般數列的內在聯系,從而滲透特殊與一般的辯證唯物主義觀點.

關于等差數列的教學建議

(1)知識結構

(2)重點、難點分析

①教學重點是等差數列的定義和對通項公式的認識與應用,等差數列是特殊的數列,定義恰恰是其特殊性、也是本質屬性的準確反映和高度概括,準確把握定義是正確認識等差數列,解決相關問題的前提條件.通項公式是項與項數的函數關系,是研究一個數列的重要工具,等差數列的通項公式的結構與一次函數的解析式密切相關,通過函數圖象研究數列性質成為可能.

②通過不完全歸納法得出等差數列的通項公式,所以是教學中的一個難點;另外,出現在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點.

(3)教法建議

①本節內容分為兩課時,一節為等差數列的定義與表示法,一節為等差數列通項公式的應用.

②等差數列定義的引出可先給出幾組等差數列,讓學生觀察、比較,概括共同規律,再由學生嘗試說出等差數列的定義,對程度差的學生可以提示定義的結構:“……的數列叫做等差數列”,由學生把限定條件一一列舉出來,為等比數列的定義作準備.如果學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是等差數列的數列作為反例,再由學生修改其定義,逐步完善定義.

③等差數列的定義歸納出來后,由學生舉一些等差數列的例子,以此讓學生思考確定一個等差數列的條件.

④由學生根據一般數列的表示法嘗試表示等差數列,前提條件是已知數列的首項與公差.明確指出其圖像是一條直線上的一些點,根據圖像觀察項隨項數的變化規律;再看通項公式,項可看作項數的一次型()函數,這與其圖像的形狀相對應.

⑤有窮等差數列的末項與通項是有區別的,數列的通項公式是數列第項與項數之間的函數關系式,有窮等差數列的項數未必是,即其末項未必是該數列的第項,在教學中一定要強調這一點.

⑥等差數列前項和的公式推導離不開等差數列的性質,所以在本節課應補充一些重要的性質;另外可讓學生研究等差數列的子數列,有規律的子數列會引起學生的興趣.

⑦等差數列是現實生活中廣泛存在的數列的數學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關問題,自己嘗試解決,為學生提供相互學習的機會,創設相互研討的課堂環境.

24962