九年級數學電子版教案
九年級數學電子版教案篇1
二次根式的乘除法
教學目標
1、使學生掌握二次根式的乘法運算法則,會用它進行簡單的二次根式的乘法運算。
2、使學生掌握積的算術平方根的性質、會根據這一性質熟練地化簡二次根式.
3、培養學生合情推理能力。
教學過程
一、復習提問
1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?
2、二次根式有哪些性質?計算下列各題:
()2
二、提出問題,導入新知
1、試一試
計算: (1) _=( )=( )
=( )=( )
(2) _=( )=( )
=( )=( )
提問:觀察以上計算結果,你能發現什么?
2、思考
_與是否相等?
提問:(1)你將用什么方法計算?
(2)通過計算,你發現了什么?是否與前面試一試的結果一樣?
3、概括
讓學生觀察以上計算結果、歸納得出結論:_=(a≥0,b≥0)
注意,a,b必須都是非負數,上式才能成立。
三、舉例應用
例1、計算。
__
說明:二次根式運算的結果,應該盡量化簡、如(2)結果不要寫成,而應化簡成4。
等式_=(a≥0,b≥0),也可以寫成=_(a≥0,b≥0)
利用它可以進行二次根式的化簡,例如:=_==a2
例2、化簡
說明:(1)如果一個二次根式的被開方數中有的因式(或因數)能開得盡方,可以利用積的算術平方根的性質,將這些因式(或因數)開出來,從而將二次根式化簡;(2)在化簡時,一般先將被開方數進行因式分解或因數分解,然后就將能開得盡方的因式(偶次方因式)或因數用它們的算術平方根代替,移到根號外,也就是開出方來。
四、課堂練習
1、計算下列各式,將所得結果化簡:
_ _
2、P12頁練習1(1)、(2)、2
五、想一想
1、__與是否相等?a、b、c有什么限制?請舉一個例子加以說明。
2、等于__ 嗎?
3、化簡:
六、小結
這節課我們學習了以下知識:
1、二次根式的乘法運算法則,即_= (a≥0,b≥0)
2、積的算術平方根,等于積中各因式的算術平方根的積,即=_ (a≥0,b≥0)……)
要特別注意,以上(1)、(2)中,a、b必須都是非負數,如果a、b中出現了負數,等式就不成立、想一想,=_成立嗎?為什么?
3、應用(1)、(2)進行計算和化簡,在計算和化簡中,復習了性質=a(a≥ 0),加深了對非負數a的算術平方根的性質的認識
七、作業
習題22.2第2、(1),(2)題,第3、(1)、(2)題、第4題
九年級數學電子版教案篇2
[本課知識要點]
會畫出這類函數的圖象,通過比較,了解這類函數的性質.
[MM及創新思維]
同學們還記得一次函數與的圖象的關系嗎?
,你能由此推測二次函數與的圖象之間的關系嗎?
,那么與的圖象之間又有何關系?
.
[實踐與探索]
例1.在同一直角坐標系中,畫出函數與的圖象.
解列表.
x…-3-2-10123…
…188202818…
…20104241020…
描點、連線,畫出這兩個函數的圖象,如圖26.2.3所示.
回顧與反思當自變量x取同一數值時,這兩個函數的函數值之間有什么關系?反映在圖象上,相應的兩個點之間的位置又有什么關系?
探索觀察這兩個函數,它們的開口方向、對稱軸和頂點坐標有那些是相同的?又有哪些不同?你能由此說出函數與的圖象之間的關系嗎?
例2.在同一直角坐標系中,畫出函數與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線.
解列表.
x…-3-2-10123…
…-8-3010-3-8…
…-10-5-2-1-2-5-10…
描點、連線,畫出這兩個函數的圖象,如圖26.2.4所示.
可以看出,拋物線是由拋物線向下平移兩個單位得到的.
回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個單位得到的.
探索如果要得到拋物線,應將拋物線作怎樣的平移?
例3.一條拋物線的開口方向、對稱軸與相同,頂點縱坐標是-2,且拋物線經過點(1,1),求這條拋物線的函數關系式.
解由題意可得,所求函數開口向上,對稱軸是y軸,頂點坐標為(0,-2),
因此所求函數關系式可看作,又拋物線經過點(1,1),
所以,,
解得.
故所求函數關系式為.
回顧與反思(a、k是常數,a≠0)的圖象的開口方向、對稱軸、頂點坐標歸納如下:
開口方向對稱軸頂點坐標
[當堂課內練習]
1.在同一直角坐標系中,畫出下列二次函數的圖象:
,,.
觀察三條拋物線的相互關系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?
2.拋物線的開口,對稱軸是,頂點坐標是,它可以看作是由拋物線向平移個單位得到的.
3.函數,當x時,函數值y隨x的增大而減小.當x時,函數取得最值,最值y=.
[本課課外作業]
A組
1.已知函數,,.
(1)分別畫出它們的圖象;
(2)說出各個圖象的開口方向、對稱軸、頂點坐標;
(3)試說出函數的圖象的開口方向、對稱軸、頂點坐標.
2.不畫圖象,說出函數的開口方向、對稱軸和頂點坐標,并說明它是由函數通過怎樣的平移得到的.
3.若二次函數的圖象經過點(-2,10),求a的值.這個函數有還是最小值?是多少?
B組
4.在同一直角坐標系中與的圖象的大致位置是()
5.已知二次函數,當k為何值時,此二次函數以y軸為對稱軸?寫出其函數關系式.
[本課學習體會]
九年級數學電子版教案篇3
在初中的數學教學過程中,函數教學是比較難的章節,我們該如何設計我們的教學過程呢?下面我來談談我的一些很淺的看法:首先函數是刻畫和研究現實世界變化規律的重要模型,也是初中數學里代數領域的重要內容,它在初中數學中具有較強的綜合性。在教學中,學生常常覺得函數抽象深奧,高不可攀,老師也覺得函數難講,講了學生也理解不了,理解了也不會解題。事實果真如此難教又難學嗎?下面我談談在教學設計方面一些方法和實踐。
一、注重類比教學
不同的事物往往具有一些相同或相似的屬性,人們正是利用相似事物具有的這種屬性,通過對一事物的認識來認識與它相似的另一事物,這種認識事物的思維方法就是類比法,利用類比的思想進行教學設計實施教學,可稱為類比教學。在函數教學中我們期望的是通過對前面知識的學習方法的傳授,達到對后續知識的學習產生影響,使學生達到舉一反三,觸類旁通的目的,讓學生順利地由學會到會學,真正實現教是為了不教的目的。有經驗的老師都會發現,初中學習的正比例函數、一次函數、反比例函數、二次函數在概念的得來、圖象性質的研究、及基本解題方法上都有著本質上的相似。因此采用類比的教學方法不但省時、省力,還有助于學生的理解和應用。是一種既經濟又實效的教學方法。下面我就舉例說明如何采用類比的方法實現函數的教學。
首先是正比例函數,它是一次函數特例,也是初中數學中的一種簡單最基本的函數。但是,我們有些教師卻因為正比例函數過于簡單,而輕視。匆匆給出概念,然后應用。等到講到一次函數、反比例函數、二次函數又感到力不從心,學生接受起來概念模糊,性質混亂,解題方法不明確。造成這種困擾的原因是因為忽視正比例函數的基礎作用,我們應該借助正比例函數這個最簡單的函數載體,把函數研究經典流程完整呈現,正所謂麻雀雖小,五臟俱全。再學習其他函數時,在此基礎上類比學習,循序漸進,螺旋上升。例如:
《正比例函數》教學流程
(一)環節一:概念的建立
通過對問題的處理用函數y=200x來反映汽車的行程與時間的對應規律引入新課。學生自覺思考教師提問,共同得出每個問題的函數關系式。引導學生觀察以上函數關系式的特點得出正比例函數的描述定義及解析式特點。
(二)環節二:函數圖象
這個環節是教學的重點,由學生先動手按列表——描點——連線的過程畫函數y=2x和y=-2x的圖象,相互交流比較然后教師利用多媒體展示畫函數圖象的過程并通過比較使學生正確掌握畫函數圖象的方法。
(三)環節三:探究函數性質
讓學生觀察函數圖象并引導學生通過比較來歸納正比例函數的性質,這個環節是本課的難點,教師要引導學生從圖象的形狀,從左往右的升降情況,經過的象限及自變量變化時函數值的變化規律。這幾個方面來歸納,最終得出正比例函數的性質。
(四)環節四:概念的歸納
將觀察、探究出的函數圖象的特征、函數的性質等做出系統的歸納。
二、注重數形結合的教學
數形結合的思想方法是初中數學中一種重要的思想方法。數學是研究現實世界數量關系和空間形式的科學。而數形結合就是通過數與形之間的對應和轉化來解決數學問題。它包含以形助數和以數解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數的嚴謹與形的直觀之長。
函數的三種表示方法:解析法、列表法、圖象法本身就體現著函數的數形結合。函數圖象就是將變化抽象的函數拍照下來研究的有效工具,函數教學離不開函數圖象的研究。在借助圖象研究函數的過程中,我們需要注意以下幾點原則:
(1)讓學生經歷繪制函數圖象的具體過程。首先,對于函數圖象的意義,只有學生在親身經歷了列表、描點、連線等繪制函數圖象的具體過程,才能知道函數圖象的由來,才能了解圖象上點的橫、縱坐標與自變量值、函數值的對應關系,為學生利用函數圖象數形結合研究函數性質打好基礎。其次,對于具體的一次函數、反比例函數、二次函數的圖象的認識,學生通過親身畫圖,自己發現函數圖象的形狀、變化趨勢,感悟不同函數圖象之間的關系,為發現函數圖象間的規律,探索函數的性質做好準備。
(2)切莫急于呈現畫函數圖象的簡單畫法。首先,在探索具體函數形狀時,不能取得點太少,否則學生無法發現點分布的規律,從而猜想出圖象的形狀;其次,教師過早強調圖象的.簡單畫法,追求方法的最優化,縮短了學生知識探索的經歷過程。所以,在教新知識時,教師要允許學生從最簡單甚至最笨拙的方法做起,漸漸過渡到最佳方法的掌握,達到認識上的最佳狀態。
(3)注意讓學生體會研究具體函數圖象規律的方法。初中階段一般采用兩種方法研究函數圖象:一是有特殊到一般的歸納法,二是控制參數法。
函數是一個整體,各個具體函數是函數的特例,研究方法應是相同的,通過類比和數形結合的方法,對比性質的差異性,將具體函數逐步納入到整個函數學習中去,這也符合教材設計的螺旋式上升的理念。這樣自然使二次函數變得難著不難,水到渠成。
關于待定系數法,首先要讓學生理解感受到待定系數法的本質:對于某些數學問題,如果已知所求結果具有某種確定的形式,則可引進一些尚待確定的系數來表示這種結果,通過已知條件建立起給定的算式和結果之間的恒等式,得到以待定系數為元的方程或方程組,解之即得待定的系數。待定系數法在確定各種函數解析式中有著重要的作用,不論是正、反比例函數,還是一次函數、二次函數,確定函數解析式時都離不開待定系數法。因此我們要重視簡單的正比例函數、一次函數的待定系數法的.應用。要在簡單的函數中講出待定系數法的本質來,等到了反比例函數和二次函數及綜合情況,學生已能形成能力,自如使用此方法,這時就是技巧的點撥。
九年級數學電子版教案篇4
一、基本情況:
本學期是初中學習的關鍵時期,本學期我擔任九年級(1)班的數學教學工作,是新課程標準實驗教材,如何用新理念使用好新課程標準教材?如何在教學中貫徹新課標精神?這要求在教學過程中的創新意識、引導學生進行思考問題方式都必須不同與以往的教學。因此,在完成教學任務的同時,必須盡可能性的創設情景,讓學生經歷探索、猜想、發現的過程。并結合教學內容和學生實際,把握好重點、難點。樹立素質教育觀念,以培養全面發展的高素質人才為目標,面向全體學生,使學生在德、智、體、美、勞等諸方面都得到發展。為做好本學期的教育教學工作,特制定本計劃。
二、指導思想:
初三數學是以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施的,其目的是教書育人,使每個學生都能夠在此數學學習過程中獲得最適合自己的發展。通過九年級數學的教學,提供參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。
三、教學內容:
本學期所教初三數學包括二次函數和圓是新授課外,主要是綜合復習,迎接中考。
四、教學目的:
1、態度與價值觀:通過學習交流、合作、討論的方式,積極探索,改進學生的學習方式,提高學習質量,逐步形成正確地數學價值觀。
2、知識與技能:理解點、直線、圓與圓的位置關系概念。掌握圓的切線及與圓有關的角等概念和計算。理解數據的整理及分析等有關概念,能夠計算方差、標準差等,能夠用表格或列樹狀圖的方法計算概率,對上述知識作一些簡單的應用。掌握初中數學教材、數學學科“基本要求”的知識點。
3、過程與方法:通過探索、學習,使學生逐步學會正確、合理地進行運算,逐步學會觀察、分析、綜合、抽象,會用歸納、演繹、類比進行簡單地推理。圍繞初中數學教材、數學學科“基本要求”進行知識梳理,圍繞初中數學“六大塊”主要內容進行專題復習,適時的進行分層教學,面向全體學生、培養全體學生、發展全體學生
五、教學重難點
第一階段(第5周—第12周):全面復習基礎知識,加強基本技能訓練
這個階段的復習目的是讓學生全面掌握初中數學基礎知識,提高基本技能,做到全面、扎實、系統,形成知識網絡。
1、重視課本,系統復習。
現在中考命題仍然以基礎題為主,有些基礎題是課本上的原題或變式題,后面的大題雖是“高于教材”,但原型一般還是教材中的例題或習題,是教材中題目的引伸、變形或組合,所以第一階段復習應以課本為主。必須深鉆教材,絕不能脫離課本,應把書中的內容進行歸納整理,使之形成結構。課本中的例題、練習和作業要讓學生弄懂、會做,書后的“讀一讀”、“想一想”、“試一試”,也要學生認真想一想,集中精力把九年級和八年級下的教學內容等重點內容的例題、習題逐題認認真真地做一遍,并注意解題方法的歸納和整理。一味搞題海戰術,整天埋頭讓學生做大量的課外習題,其效果并不明顯,有本末倒置之嫌。
教師在這一階段的教學主要按知識塊組織復習,可將代數部分分為六章節:第一章數與式;第二章方程與不等式;第三章函數;第四章基本圖形;第五章圖形與變換;第六章統計與概率。復習中可由教師提出每個章節的復習提要,指導學生按“提要”復習,同時要注意引導學生根據個人具體情況把遺忘了知識重溫一遍,邊復習邊作知識歸類,加深記憶,還要注意引導學生弄清概念的內涵和外延,掌握法則、公式、定理的推導或證明,例題的選擇要有針對性、典型性、層次性,并注意分析例題解答的&39;思路和方法。
2、重視對基礎知識的理解和基本方法的指導。
基礎知識即初中數學課程中所涉及的概念、公式、公理、定理等。要求學生掌握各知識點之間的內在聯系,理清知識結構,形成整體的認識,并能綜合運用。例如一元二次方程的根與二次函數圖形與x軸交點之間的關系,是中考常常涉及的內容,在復習時,應從整體上理解這部分內容,從結構上把握教材,達到熟練地將這兩部分知識相互轉化。又如一元二次方程與幾何知識的聯系的題目有非常明顯的特點,應掌握其基本解法。每年的中考數學會出現一兩道難度較大,綜合性較強的數學問題,解決這類問題所用到的知識都是同學們學過的基礎知識,并不依賴于那些特別的,沒有普遍性的解題技巧。
中考數學命題除了著重考查基礎知識外,還十分重視對數學方法的考查,如配方法,換元法,判別式法等操作性較強的數學方法。在復習時應對每一種方法的內涵,它所適應的題型,包括解題步驟都應熟練掌握。
3、重視對數學思想的理解及運用。
如告訴了自變量與因變量,要求寫出函數解析式,或者用函數解析式去求交點等問題,都需用到函數的思想,教師要讓學生加深對這一思想的深刻理解,多做一些相關內容的題目;再如方程思想,它是利用已知量與未知量之間聯系和制約的關系,通過建立方程把未知量轉化為已知量;再如數形結合的思想,不少同學解這類問題時,要么只注意到代數知識,要么只注意到幾何知識,不會熟練地進行代數知識與幾何知識的相互轉換,建議復習時應著重分析幾個題目,讓學生悉心體會數形結合問題在題目中是如何呈現的和如何轉換的。
第二階段(第13周——第18周):綜合運用知識,加強能力培養
中考復習的第二階段應以構建初中數學知識結構和網絡為主,從整體上把握數學內容,提高能力。
培養綜合運用數學知識解題的能力,是學習數學的重要目的之一。這個階段的復習目的是使學生能把各個章節中的知識聯系起來,并能綜合運用,做到舉一反三、觸類旁通。這個階段的例題和練習題要有一定的難度,但又不是越難越好,要讓學生可接受,這樣才能既激發學生解難求進的學習欲望,又使學生從解決較難問題中看到自己的力量,增強前進的信心,產生更強的求知欲。如果說第一階段是總復習的基礎,是重點,側重雙基訓練,那么第二階段就是第一階段復習的延伸和提高,應側重培養學生的數學能力。這一階段尤其要精心設計每一節復習課,注意數學思想的形成和數學方法的掌握。初中總復習的內容多,復習必須突出重點,抓住關鍵,解決疑難,這就需要充分發揮教師的主導作用。而復習內容是學生已經學習過的,各個學生對教材內容掌握的程度又各有差異,這就需要教師千方百計地激發學生復習的主動性、積極性,引導學生有針對性的復習,根據個人的具體情況,查漏補缺,做知識歸類、解題方法歸類,在形成知識結構的基礎上加深記憶。除了復習形式要多樣,題型要新穎,能引起學生復習的興趣外,還要精心設計復習課的教學方法,提高復習效益。
六、教學措施:
針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:
1、新課開始前,用一個周左右的時間簡要復習上學期的所有內容,特別是幾何部分。
2、教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。
3、教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。
4、新課教學中涉及到舊知識時,對其作相應的復習回顧。
5、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。
七、教學進度:
第1周-第2周第二章二次函數
第3周—第4周第三章圓
第5周-第6周復習七年級數學
第7周-第8周復習八年級數學
第9周-第10周期考
第11周-第12周復習九年級數學
第13周專題一
第14周專題二
第15周專題三
第16周-第19周綜合模擬訓練
除了以上計劃外,我還將預計開展轉化個別后進生工作,教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力,重視實習作業。
九年級數學電子版教案篇5
第1課時解決代數問題
1.經歷用一元二次方程解決實際問題的過程,總結列一元二次方程解決實際問題的一般步驟.
2.通過學生自主探究,會根據傳播問題、百分率問題中的數量關系列一元二次方程并求解,熟悉解題的具體步驟.
3.通過實際問題的解答,讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.
重點
利用一元二次方程解決傳播問題、百分率問題.
難點
如果理解傳播問題的傳播過程和百分率問題中的增長(降低)過程,找到傳播問題和百分率問題中的數量關系.
一、引入新課
1.列方程解應用題的基本步驟有哪些?應注意什么?
2.科學家在細胞研究過程中發現:
(1)一個細胞一次可分裂成2個,經過3次分裂后共有多少個細胞?
(2)一個細胞一次可分裂成x個,經過3次分裂后共有多少個細胞?
(3)如是一個細胞一次可分裂成2個,分裂后原有細胞仍然存在并能再次分裂,試問經過3次分裂后共有多少個細胞?
二、教學活動
活動1:自學教材第19頁探究1,思考教師所提問題.
有一人患了流感,經過兩輪傳染后,有121人患了流感,每輪傳染中平均一個人傳染了幾個人?
(1)如何理解“兩輪傳染”?如果設每輪傳染中平均一個人傳染了x個人,第一輪傳染后共有________人患流感.第二輪傳染后共有________人患流感.
(2)本題中有哪些數量關系?
(3)如何利用已知的數量關系選取未知數并列出方程?
解答:設每輪傳染中平均一個人傳染了x個人,則依題意第一輪傳染后有(x+1)人患了流感,第二輪有x(1+x)人被傳染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合題意舍去)
因此每輪傳染中平均一個人傳染了10個人.
變式練習:如果按這樣的傳播速度,三輪傳染后有多少人患了流感?
活動2:自學教材第19頁~第20頁探究2,思考老師所提問題.
兩年前生產1噸甲種藥品的成本是5000元,生產1噸乙種藥品的成本是6000元,隨著生產技術的進步,現在生產1噸甲種藥品的成本是3000元,生產1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(1)如何理解年平均下降額與年平均下降率?它們相等嗎?
(2)若設甲種藥品年平均下降率為x,則一年后,甲種藥品的成本下降了________元,此時成本為________元;兩年后,甲種藥品下降了________元,此時成本為________元.
(3)增長率(下降率)公式的歸納:設基準數為a,增長率為x,則一月(或一年)后產量為a(1±x);
二月(或二年)后產量為a(1±x)2;
n月(或n年)后產量為a(1±x)n;
如果已知n月(n年)后總產量為M,則有下面等式:M=a(1±x)n.
(4)對甲種藥品而言根據等量關系列方程為:________________.
三、課堂小結與作業布置
課堂小結
1.列一元二次方程解應用題的步驟:審、設、找、列、解、答.最后要檢驗根是否符合實際.
2.傳播問題解決的關鍵是傳播源的確定和等量關系的建立.
3.若平均增長(降低)率為x,增長(或降低)前的基準數是a,增長(或降低)n次后的量是b,則有:a(1±x)n=b(常見n=2).
4.成本下降額較大的藥品,它的下降率不一定也較大,成本下降額較小的藥品,它的下降率不一定也較小.
作業布置
教材第21-22頁習題21.3第2-7題.第2課時解決幾何問題
1.通過探究,學會分析幾何問題中蘊含的數量關系,列出一元二次方程解決幾何問題.
2.通過探究,使學生認識在幾何問題中可以將圖形進行適當變換,使列方程更容易.
3.通過實際問題的解答,再次讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.
重點
通過實際圖形問題,培養學生運用一元二次方程分析和解決幾何問題的能力.
難點
在探究幾何問題的過程中,找出數量關系,正確地建立一元二次方程.
活動1創設情境
1.長方形的周長________,面積________,長方體的體積公式________.
2.如圖所示:
(1)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個邊長為2cm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.
(2)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個邊長為xcm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.
活動2自學教材第20頁~第21頁探究3,思考老師所提問題
要設計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應如何設計四周邊襯的寬度(精確到0.1cm).
(1)要設計書本封面的長與寬的比是________,則正中央矩形的長與寬的比是________.
(2)為什么說上下邊襯寬與左右邊襯寬之比為9∶7?試與同伴交流一下.
(3)若設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則中央矩形的長為________cm,寬為________cm,面積為________cm2.
(4)根據等量關系:________,可列方程為:________.
(5)你能寫出解題過程嗎?(注意對結果是否合理進行檢驗.)
(6)思考如果設正中央矩形的長與寬分別為9xcm和7xcm,你又怎樣去求上下、左右邊襯的寬?
活動3變式練習
如圖所示,在一個長為50米,寬為30米的矩形空地上,建造一個花園,要求花園的面積占整塊面積的75%,等寬且互相垂直的兩條路的面積占25%,求路的寬度.
答案:路的寬度為5米.
活動4課堂小結與作業布置
課堂小結
1.利用已學的特殊圖形的面積(或體積)公式建立一元二次方程的數學模型,并運用它解決實際問題的關鍵是弄清題目中的數量關系.
2.根據面積與面積(或體積)之間的等量關系建立一元二次方程,并能正確解方程,最后對所得結果是否合理要進行檢驗.
作業布置
教材第22頁習題21.3第8,10題.
九年級數學電子版教案篇6
教學目標
知識與技能目標:理解生活中的百分率,掌握求百分率的方法,能正確求出百分率。過程與方法目標:通過自主探究、合作交流,理解常用百分率的含義及計算方法。情感、態度與價值觀目標:體會求百分率的用處和必要性,感受百分率源于生活,滲透數學來源于生活并服務于生活的數學思想。
教學重難點
教學重點:理解生活中常見的百分率的含義。
教學難點:正確計算常見的百分率。
教學過程
一、創設情境,探究導入
1、課件出示
看圖,回答下面的問題。
(1)圖中陰影部分占整個圖形的幾分之幾?用百分數怎樣表示?
(2)圖中空白部分占陰影部分的幾分之幾?用百分數怎樣表示?
2、百分數的意義
我們班有36%的學生參加了美術興趣小組。
世界總人口中大約有50%的人口年齡低于25歲。
一瓶農夫果園飲料中果汁含量大約是10%。
我們班學生的近視率是45%。
3、小剛做了10道題,錯了2道
做對的題數占總題數的幾分之幾?
做錯的題數占總題數的幾分之幾?
做對的題數占總題數的百分之幾?
做錯的題數占總題數的百分之幾?
求a是b的百分之幾和求a是b的幾分之幾方法是相同的,都是:a÷b
4、六年級有學生160人,已達到《國家體育鍛煉標準》(兒童組)的有120人,占六年級學生人數的幾分之幾?六年級有學生160人,已達到《國家體育鍛煉標準》(兒童組)的有120人,占六年級學生人數的百分之幾?
學生獨立思考、同桌交流:嘗試計算,得出結論。
5、談話,導入新課
在我們的日常生活中像這樣的百分率還有很多,如發芽率、及格率、出米率等,它可以幫助我們解決生活中的一些實際問題。
下面,讓我們共同走進百分率,探究它的計算方法(板書:百分率的計算)。
二、學習新知
1、教學例1——在具體情境中認識百分率,探究計算方法
(1)出示例1:六年級有學生160人,已達到《國家體育鍛煉標準》(兒童組)的有120人。六年級學生的達標率是多少?
(2)學生讀題,分析題意,思考達標率的含義,嘗試計算。
(3)指名板演并交流思維過程,集體訂正。
(4)教師小結
指導學生明確達標率是百分率的一種,它的含義即“達標人數是測試總人數的百分之幾”,與“求一個數是另一個數的幾分之幾”問題的計算方法相同,因此用“達標人數÷測試總人數”就行;因為百分率是百分數,計算結果應是百分數形式,所以完整的計算方法應是“達標率=達標人數除以測試總人數×100%”。
談話:《國家學生體質健康標準》要求小學生體質健康達標率不得低于60%,通過計算、比較,說明我們班學生的體質是達到健康標準的,這也是百分率的價值所在。
2、教學例2——掌握百分率計算方法,認識百分率的價值
(1)出示例2:科學課上,五(2)班同學做的種子發芽實驗結果如下:
種子名稱實驗種子總數發芽數發芽率
綠豆8078
花生5046
大蒜2019
(2)學生讀題,弄清已知條件和問題,討論發芽率的含義,嘗試計算各種種子的發芽率。(3)指名學生交流發芽率的含義及計算方法,板演算式,集體訂正。
(4)比較,認識發芽率在生產實踐中的價值。
通過計算我們發現哪種種子的發芽率要高一些?哪種要低一些呢?講解:發芽率對于農民種田是十分重要的,他們需要根據發芽率的高低,決定種子品種和播種面積。
3、小組合作探究,尋找生活中的百分率,總結百分率計算公式。
(1)談話,明確合作學習要求:在實際生活中,像命中率、達標率、發芽率等這樣的百分率還有很多,請小組四位同學在一起開動腦筋、積極協作,尋找生活中的百分率,寫出它的計算方法,比一比哪個小組找得最多。
(2)小組合作,尋找生活中的百分率,探究其含義及其計算方法,寫出計算公式,教師巡視了解小組合作情況及結果。
(3)小組代表匯報本組收集的百分率,闡明其含義,在投影儀上展示計算方法,師生共同訂正。
(4)羅列不同百分率的計算方法,引導學生發現共同點,總結百分率的計算公式:?率=量?除以總數量×100%
(5)舉實例,加深對百分率計算公式的認識,掌握百分率計算方法。
4、某縣種子推廣站,用300粒玉米種子作發芽試驗,結果發芽的種子有288粒。求發芽率。
5、探討、交流:生活中的百分率哪些可能大于100%?哪些只會等于或小于100%?三、鞏固練習
1、填一填
①稻谷的出米率是85%,是指()
的千克數占()的千克數的百
分之八十五。
②甲數是乙數的4/5,乙數是甲數的
()%。
③20÷()=4/8=()︰24=()%
2、選一選:
種一批樹,活了100棵,死了1棵,求成活率的正確算式是()。
一根鋼管截成2段,第一段長米,第二段占全長的60%,這兩段鋼管比較()。布置作業
1、小組合作,整理生活中常見的百分率的計算方法,寫在數學書第86頁上。
2、完成練習二十第2、3、4題。
四、課堂小結
今天你有什么收獲?生談收獲。
九年級數學電子版教案篇7
教學目標
1.使學生掌握百分數、小數互化的方法,并能正確的互化。
2.在學習互化的過程中使學生認識到這二者之間的內在聯系,為后面學習百分數的計算和應用打下基礎。
3.在學習的過程中培養學生的分析思維和抽象概括能力。
教學重難點
使學生理解掌握百分數和小數互化的方法。
教學工具
課件
教學過程
一、活動(一)復習準備
1、課件出示復習題。
張宇跳繩個數是陳聰的1.37倍。
王志祥跳繩個數是陳聰的6/5.
劉星宇跳繩個數是陳聰的137.5%.
思考:這三個人誰跳得最多,怎么比較?
2.引入新課。
在生產、工作和生活中進行統計和分析時,為了便于統計和比較,我們常用百分數表示一些數據。除了用百分數表示,還可以用什么數表示?
這節課我們就來學習百分數和小數的互化以及百分數和分數的互化。
二、活動(二)百分數和小數的互化。
(1)回憶小數化分數的過程。
(2)小數要化成百分數,分母應是多少?怎樣使它的分母變成100呢?
三、活動(三)百分數化成小數
1、例1:把0.25,1.4,0.123化成百分數。
①小數化百分數分幾步進行?
②學生回答,教師板書:0.25=25/100=25%
③1.4怎樣化成分母是100的分數?根據什么?
④“做一做”:把下面各小數化成百分數。
0.381.050.0553
⑤觀察例1的各小數,化成百分數后發生了怎樣的變化?
你所做的練習的各數是不是也發生了同樣的變化?這一變化符合什么?
⑥現在你能很快地把下列小數化成百分數嗎?(口答)
2.50.7850.16
2、例2:把27%,135%,0.4%化成小數。
學生自己試做,學生總結方法
①說一說百分數化小數的方法。
②觀察百分數化成小數發生了什么變化?
③把下面各百分數化成小數
15%80%3.5%
3、小結。
通過剛才的分析、歸納,誰能說一說百分數和小數怎樣互化?
四、鞏固與提高
1、P80“做一做”
2、練習十九的第2題
五、作業
練習十九的第1題
課后習題
練習十九的第1題