欧美一级高清在线观看,亚洲第一福利视频,高清在线一区二区,国产成人精品第一区二区

寫方案網 > 教學教案 > 數學教案 >

七年級數學電子版教案

時間: 新華 數學教案

七年級數學電子版教案篇1

一、教學內容分析:

在學完4.1…4.3這三小節的學習,學生意識到立體圖形是由平面圖形圍成的.因此此時學生的心中有一種意猶未盡的感覺,他們希望有對所學知識作進一步探究及討論的機會,因此平面圖形這一節課由此而產生.平面圖形是建立在學生具有一定空間觀念基礎上,對有關圖形知識的一個再知過程。它是對學生空間觀念,基本圖形知識以及動手操作能力的一種綜合培養。首先課本p140頁圖4.4.1給出了5幅形狀各異的物體照片,向學生提問是否能畫出它們的表面形狀。并讓學生舉出類似的例子,由此引起學生的好奇心,激發學生的學習興趣。其次,由學生動手得出的5個圖形,引出多邊形的定義以及多邊形的分類。然后,讓學生通過觀察7個圖形,思考當中那些是四邊形,由四邊形鞏固并加深多邊形,接著讓學生展開充分的討論與交流完成多邊形的分割。最后的試一試以實際生活中的一些優美圖案結尾,讓學生找出其中的的平面圖形,剛好與剛上課時的圖4.4.1遙向對應,再次激起學生的探究學習的興趣。

二、目標的設定與重難點的確立:

根據新課程標準的目標之一:“要使學生具有初步的創新精神和實踐能力,在情感態度和一般能力方面都能得到充分發展。”在教學設計上,通過創設的豐富背景,激發學生的學習興趣和探究欲,引導學生積極參與和主動探索,并在實踐中積累教學活動經驗,發展有條理的思考。

由于在平面圖形這節課中,除了要學習多邊形的相關內容是重點外,還要經常識別圖形或畫圖,因此觀察并分析出圖形的基本構成是平面圖形這節課的關鍵,也是本課的難點所在,也是本節課學生所要達到的能力目標。

課程目標:

1、通過平面圖形的學習,鞏固有關圖形知識,進一步建立空間觀念。

2、掌握多邊形的相關內容。

能力目標:

1、在探索和實踐的過程中,培養學生觀察圖形、分析圖形和初步的幾何語言表達能力。

2、發展學生動手實踐,自主探索的思考及想象、欣賞能力。

情感目標:培養學生勇于探索和積極參與的精神。

重點:多邊形的識別及分類,并了解多邊形分割為三角形的規律。

難點:在設計過程中,對圖形基本構成進行有條理的分析,并能用自己的語言表達出來。

三、教法選擇

1、 教學結構和教學基本思路

針對七年級學生的年齡特點和心理特征,以及他們的認知水平,采用誘導式教學方法,師生互動,鼓勵學生團結協作、大膽猜想并動手操作,以觀察、實驗、整理、分析、歸納、猜想為主,形象的背景下進行教學設計。生活是多姿多彩的,數學又來源于生活,首先以各種實際生活中的精美平面圖形為背景,吸引學生的注意力,引發他們的學習熱情。通過三角形,長方形這些熟悉的圖形,向學生介紹了多邊形的定義及特征.通過四邊形的識別,進一步使學生了解空間中的圖形。而由所由多邊形可分割為三角形這一內容,了解三角形的特殊地位,為將來以后的三角形學習埋下伏筆。最后一部分的試一試,通過學生對圖形構成的分析,再次激起學生的探究學習的興趣,培養學生的觀察能力,是引導學生探索平面圖形的一個感性認識過程。

2、 重難點突破法

書中是以實物圖形的表面形狀引出多邊形的定義及分類,多邊形的有關內容是本節課的重點。教學時首先要求學生要自己動手畫出圖形。其次,在引出多邊形時,應加強多邊形的識別及分類,從而讓學生更容易掌握。而在多邊形的分割時,通過多個圖形的實驗,使學生獲得感性認識,再猜想分割的規律,從而突出了重點。

分析平面圖形構成是能否找出或畫出其中所包含多邊形的關鍵,也是本節課的深化。因此在突出重點的基礎上,還要鼓勵學生多觀察,多動腦,多分析,充分展開合作與交流。必要時再加以適當的引導。特別是試一試中的圖案,應給讓學生足夠的時間分析出圖案的基本構成,在明確了基本構成后,應讓學生按一定的順序(由外到內或有大到小等)說出所含的圖形,就能找出所有所含的圖形,從而使難點消化,最終突破難點!

四、學法指導

本節課以學生的觀察猜想為主,要求學生多觀察,大膽猜想。這要求學生建立在有實物圖形的基礎上了解平面圖形的相關內容.另外,在探索與實踐過程中還要體現學生分析問題的能力和良好的口頭表達能力。因此,在課堂上主要采取積極引導,主動參與,合作交流的方法來組織教學,使學生真正成為教學的主體,體會成功的喜悅,感知數學的奇妙。

五、教學輔助手段的使用

利用直觀形象的圖案模型來體現本節內容的知識性與趣味性,使得觀察、猜想、討論與分析一起進行。有利于吸引學生的注意力,激發學生學習與探索的熱情。

六、作業設計

p143課后練習相對容易操作,讓學生獨立完成。但課后練習2,要說出理由,這對學生的語言表達能力有一定的要求,可以首先分成小組討論。如果感到有難度,可以適當啟發引導。

七年級數學電子版教案篇2

教學目標

1.知道有效數字的概念;

2.會按要求進行近似數的運算

教學過程

一、創設情境,導入新課

1.什么叫實數?實數怎么分類?

2.在有理數范圍內學過的概念、運算法則、運算定律、性質,在實數范圍內還適應嗎?

3.做一做

如果正方形ABCD的面積為3平方厘米,正方形EFGH的面積為5平方厘米,這兩個正方形的邊長的和大約是多少厘米(精確到小數點后面第一位)?

二、合作交流,探究新知

1交流上面問題的做法

(1)估計同學們會有兩種做法:

用計算器分別求的近似值,用四舍五入取到小數點后面第一位,然后相加,得:(厘米)

(2)用計算器直接求出的近似值,用四舍五入取到小數點后面第一位,得:

如果沒有兩種做法,也要想辦法引出這兩種做法

兩種做法的答案不同,哪一種答案正確呢?

請同學們把第一種做法修改一下:將的近似值分別取到小數點后第二位,然后相加。你發現了什么?

這時兩種做法的答案就一樣了。

從這個例子看出,在進行實數的加減運算時,如果要求答案取到小數點后面第一位,那么參與運算的每一個實數的近似值應當多一位,即取到第二位,最后結果才取到小數點后面第一位。

2、引入有效數字的概念

在上面運算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似數1.73的三個有效數字。什么叫近似數的有效數字呢?

先思考:0.010256精確到小數點后面第三位,等于多少呢?

0.0102560.0103

近似數0.0103有三個有效數字1、0、3

現在你能說說,什么叫近似數的有效數字嗎?

從第一個不是零點數字起到最后一個不數字止的所有數字叫近似數的有效數字。

考考你:1近似數0.03350有幾個有效數字,分別是______________________.

2125萬保留兩個有效數字等于__________

3有_______個有效數字。

3、怎樣進行近似值的運算?

在近似數的加減法運算中,如果被減數與減數相差較大,那么參與運算的最大數多取一位有效數字,其余的數取到與最大數最低位相對應的那一位止。

例1計算:27.65+0.02856+-3.414(保留三個有效數字)提醒:最后一位數字為0,不能省略。

(2)在進行近似數的乘法和除法運算中,參與運算的每一個數應多取一位有效數字。

例2在上面做一做問題中,如果分別以正方形ABCD、EFGH的邊長作為寬與長,做一個長方形,那么這個長方形的面積大約是多少平方厘米(保留三個有效數字)

考考你:1.計算(精確到小數點后面第二位)(1),(2)

2.計算(保留三個有效數字)(1)(2)

三、應用遷移,鞏固提高

例3(1)一個正方形的體積變為原來的27倍,它的棱長變為多少倍?表面積變為原來的多少倍?

變式:上面問題中27倍改為:8倍,其他不變

例4已知求a+b的值。

例5設a、b為實數,且求的值。

四、反思小結,拓展提高

這節課,你認為最重要的是什么?

1.有效數字的概念;2.實數的近似數的計算

七年級數學電子版教案篇3

學習目標

1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.毛

2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.

重點難點

同位角、內錯角、同旁內角的特征

教學過程

一·導入

1.指出右圖中所有的鄰補角和對頂角?

2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?

若都不是,請自學課本P6內容后回答它們各是什么關系的角?

二·問題導學

1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。

2. 如圖⑶是"直線 , 被直線 所截"形成的圖形

(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。

(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。

(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。

3.找出圖⑶中所有的同位角、內錯角、同旁內角

4.討論與交流:

(1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?

(2)歸納總結同位角、內錯角、同旁內角的特征:

同位角:"F" 字型,"同旁同側"

"三線八角" 內錯角:"Z" 字型,"之間兩側"

同旁內角:"U" 字型,"之間同側"

三·典題訓練

例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?

小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;

兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;

自我檢測

⒈如圖⑷,下列說法不正確的是( )

A、∠1與∠2是同位角 B、∠2與∠3是同位角

C、∠1與∠3是同位角 D、∠1與∠4不是同位角

⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角.

⒊如圖⑹, 直線DE截AB, AC, 構成八個角:

① 指出圖中所有的同位角、內錯角、同旁內角.

②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?

⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出當BC、DE被AB所截時,∠3的同位角、內錯角和同旁內角.

②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)

相交線與平行線練習

課型:復習課: 備課人:徐新齊 審核人:霍紅超

一.基礎知識填空

1、如圖,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如圖,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如圖,∵∠D=∠DCF(已知)

∴_____//______( )

6、如圖,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2題) (第5、6題) (第7題) (第9題)

7、如圖,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

二.基礎過關題:

1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。

證明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代換 )

∴BD∥CE( )。

2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。

證明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.

七年級數學電子版教案篇4

教學目標

1.使學生在了解代數式概念的基礎上,能把簡單的與數量有關的詞語用代數式表示出來;

2.初步培養學生觀察、分析和抽象思維的能力。

教學重點和難點

重點:列代數式。

難點:弄清楚語句中各數量的意義及相互關系。

課堂教學過程設計

一、從學生原有的認知結構提出問題

1?用代數式表示乙數:(投影)

(1)乙數比x大5;(x+5)

(2)乙數比x的2倍小3;(2x-3)

(3)乙數比x的倒數小7;(-7)

(4)乙數比x大16%?((1+16%)x)

(應用引導的方法啟發學生解答本題)

2?在代數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式?本節課我們就來一起學習這個問題?

二、講授新課

例1用代數式表示乙數:

(1)乙數比甲數大5;(2)乙數比甲數的2倍小3;

(3)乙數比甲數的倒數小7;(4)乙數比甲數大16%?

分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數?

解:設甲數為x,則乙數的代數式為

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?

(本題應由學生口答,教師板書完成)

最后,教師需指出:第4小題的答案也可寫成x+16%x?

例2用代數式表示:

(1)甲乙兩數和的2倍;

(2)甲數的與乙數的的差;

(3)甲乙兩數的平方和;

(4)甲乙兩數的和與甲乙兩數的差的積;

(5)乙甲兩數之和與乙甲兩數的差的積?

分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式?

解:設甲數為a,乙數為b,則

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?

(本題應由學生口答,教師板書完成)

此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序?

例3用代數式表示:

(1)被3整除得n的數;

(2)被5除商m余2的數?

分析本題時,可提出以下問題:

(1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的.數如何表示?

(2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?

解:(1)3n;(2)5m+2?

(這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)?

例4設字母a表示一個數,用代數式表示:

(1)這個數與5的和的3倍;(2)這個數與1的差的;

(3)這個數的5倍與7的和的一半;(4)這個數的平方與這個數的的和?

分析:啟發學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”?

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?

(通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力?)

例5設教室里座位的行數是m,用代數式表示:

(1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?

(2)教室里座位的行數是每行座位數的,教室里總共有多少個座位?

分析本題時,可提出如下問題:

(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數)

解:(1)m(m+6)個;(2)(m)m個?

三、課堂練習

1?設甲數為x,乙數為y,用代數式表示:(投影)

(1)甲數的2倍,與乙數的的和;(2)甲數的與乙數的3倍的差;

(3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商?

2?用代數式表示:

(1)比a與b的和小3的數;(2)比a與b的差的一半大1的數;

(3)比a除以b的商的3倍大8的數;(4)比a除b的商的3倍大8的數?

3?用代數式表示:

(1)與a-1的和是25的數;(2)與2b+1的積是9的數;

(3)與2x2的差是x的數;(4)除以(y+3)的商是y的數?

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕

四、師生共同小結

首先,請學生回答:

1?怎樣列代數式?2?列代數式的關鍵是什么?

其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式:

(1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一);

(2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;

(3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握?

五、作業

1?用代數式表示:

(1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?

(2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?

2?已知一個長方形的周長是24厘米,一邊是a厘米,

求:(1)這個長方形另一邊的長;(2)這個長方形的面積。

學法探究

已知圓環內直徑為acm,外直徑為bcm,將100個這樣的圓環一個接著一個環套環地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

分析:先深入研究一下比較簡單的情形,比如三個圓環接在一起的情形,看有沒有規律。

當圓環為三個的時候,如圖:

此時鏈長為,這個結論可以繼續推廣到四個環、五個環、…直至100個環,答案不難得到:

解:

=99a+b(cm)

七年級數學電子版教案篇5

教學目的:

掌握坐標變化與圖形平移的關系;

發展學生的形象思維能力和數形結合意識。

教學重點:掌握圖形平移前后的坐標變化規律,

教學難點:利用圖形平移解決相關問題。

教學過程:

復習引入

1、什么叫平移?

把一個圖形整體沿某一方向移動一定的距離,這種移動叫做平移。

2、平移有什么性質?

(1)把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。

(2)新圖形中的每一點,都是原圖形中某一點移動后得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。

(3)問:一個點平移后的坐標會發生變化嗎?

二、新授

1、平面直角坐標系內有一點a(-2,-3)

1將點a(-2,-3)向右平移5個單位后,得到點 a1的坐標是什么?

2將點a(-2,-3)向上平移4個單位后,得到點 a2的坐標是什么?

2、歸納:

在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));

將點(x,y)向上(或下)平移 b個單位長度,可以得到對應點(x,y+b)(或(x,y-b)) 。

簡稱:橫移縱不變,縱移橫不變。

3、問:線段ab兩個端點的坐標分別是a(-5,3),b(-3,0).將線段ab兩個端點的橫坐標都加上6,縱坐標不變分別得到點a1 、 b1 , 連接a1 、b1 ,所得線段與原線段的大小和位置上有什么關系?

4、例題:三角形abc三個頂點的坐標分別是a(4,3)b(3,1)c(1,2)

(1)將三角形abc三個頂點的橫坐標都減去6,縱坐標不變,分別得到點a1、b1、c1,依次連接各點,所得三角形a1 b1 c1與三角形a b c的大小、形狀和位置上有什么關系?

(2)將三角形abc三個頂點的縱坐標都減去5,橫坐標不變,分別得到點a2 、b2 、c2 ,依次連接各點,所得三角形a2b2c2與三角形abc的大小、形狀和位置上有什么關系?

5、歸納:

在平面直角坐標系內:

如果把一個圖形各個點的橫坐標都加(或減去)一個正數 a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;

如果把它各個點的縱坐標都加(或減去)一個正數 a,相應的新圖形就是把原圖形向上(或向下 )平移 a個單位長度.

6、思考:如果將三角形abc三個頂點的橫坐標都減去6,同時縱坐標都減去5,這時圖形在哪兒?把它畫出來!(有幾種平移方法)

7、p53t1:圖中三架飛機p、q、r保持編隊飛行,分別寫出它們的坐標。30秒后,飛機p飛到p`位置,飛機q、r飛到了什么位置?分別寫出這三架飛機新位置的坐標。

8、課內練習:

1p53練習;

2口答:p53習題t2、3、4、6。

9、小結:

1在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(x-a,y));

將點(x,y)向上(或下)平移 b個單位長度,可以得到對應點(x,y+b)(或(x,y-b)) 。

2在平面直角坐標系內:

如果把一個圖形各個點的橫坐標都加(或減去)一個正數 a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度;

如果把它各個點的縱坐標都加(或減去)一個正數 a,相應的新圖形就是把原圖形向上(或向下 )平移 a個單位長度.

10、作業:p55t7、8

七年級數學電子版教案篇6

教學目標:

1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。

2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。

重點難點:

重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點:勾股定理的發現

教學過程

一、創設問題的情境,激發學生的學習熱情,導入課題

二、做一做

出示投影3提問:

1、圖1—3中,A,B,C之間有什么關系?

2、圖1—4中,A,B,C之間有什么關系?

3、從圖1—1,1—2,1—3,1—4中你發現什么?

學生討論、交流形成共識后,教師總結:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、議一議

1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、你能發現直角三角形三邊長度之間的關系嗎?

在同學的交流基礎上,老師板書:直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c,那么我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

四、想一想

這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

25965